
 
 

 

AgriDataValue 

Smart Farm and Agri-environmental Big Data 

Value 
 

Deliverable D1.1 

Definition & analysis of use cases and 

system requirements V1 
 

Authors Th. Zahariadis, O. Alvaniti, N. Afratis, A. Terpou. P. Athanasoulis, S. Rizou, I. Katris, M. 
Al Sayah, N. El Beyrouthy, Y. Oikonomidis, I. Chrysakis, R. Lazcano, P. Ramírez, N. 
Peiren, A. Turkmayali, J. Kiers, S. Bossuyt, E. Ampe, I. Salinas, E. Pardo, A. del Saz, F. 
José Lacueva-Pérez, V. Inglezou, G. Kokkinos, S. Neicu, K. Dmochowska-Dudek, P. 
Grzyś, M. Wójcik, P. Tobiasz-Lis 

Nature Report 

Dissemination Public 

Version V1.0 

Status Draft 

Delivery Date (DoA) M04 

Actual Delivery Date 31 May 2023 

 

Keywords Use Cases, Functional Requirements, Non-Functional Requirements, Data Models, 
Interoperability,  

Abstract AgriDataValue is a comprehensive research project aimed at leveraging advanced 
technologies to revolutionize the agricultural sector. Through the integration of IoT, 
geospatial data, machine learning, and blockchain, AgriDataValue seeks to enhance 
the efficiency, sustainability, and productivity of farming practices. The project 
focuses on developing innovative tools and platforms for data collection, analysis, and 
decision-making processes in agriculture. By harnessing the power of IoT sensors, 
satellite imagery, and drone technology, AgriDataValue enables real-time monitoring 
and precise management of crops, water resources, and livestock. The utilization of 
machine learning algorithms facilitates data processing, pattern recognition, and 
predictive analytics, empowering farmers with actionable insights for optimizing 
resource allocation, crop treatment, and livestock management. Furthermore, the 
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integration of blockchain technology ensures transparency, traceability, and data 
integrity throughout the food supply chain, fostering trust and accountability among 
stakeholders. The ultimate goal of AgriDataValue is to enable sustainable and smart 
farming practices that enhance food production, minimize environmental impact, and 
meet the challenges of a growing global population. 
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Executive Summary 
One of the main objectives of AgriDataValue is to strengthen the capacities for smart farming and enhance the 

environmental and economic performance of the agricultural sector. Moreover, AgriDataValue aims to strengthen 

the capacities for climate monitoring, particularly soil & crop conditions in-line with UN Sustainable Development 

Goals [1]. To achieve the above objectives, AgriDataValue will work toward the development of the required 

technological innovations. 

This Deliverable entitled “Definition & Analysis of Use Cases and System requirements” has twofold objectives: on 

one hand, it aims to update, refine, extend and analyse the project Use Cases (UCs) as they had been presented 

in the project Description of Action (DoA). On the other hand, it aims to provide an initial list of system 

requirements to be updated in the next months in parallel to the Agri Data Space (ADS) System specifications.  
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1 Introduction 
By the year 2050, Earth is projected to be home to a population of over 10 billion people, signifying the urgent 

need for substantial increases in agricultural production, potentially as high as 65% to sustainably feed the global 

population. However, as we strive to accommodate this exponential growth, we face a significant challenge: most 

of the Earth's arable lands are already occupied, and approximately 70% of the available drinking water is being 

utilized for crop irrigation, with over 60% of this water being wasted due to inefficient irrigation practices. 

The consequences of such wasteful irrigation techniques are multifaceted and far-reaching. Overirrigation not 

only leads to the proliferation of fungal and bacterial diseases, causing significant crop losses, but it also disrupts 

the delicate oxygen balance in the root zones, hampering plant water uptake and reducing soil temperatures. 

Moreover, this excess water application promotes nutrient leaching, diminishing the soil's fertility and further 

exacerbating the environmental impact. Additionally, the excessive use of fertilizers in Europe, exceeding 220,000 

tonnes, poses a great risk of aquifer contamination, threatening the already fragile ecosystems and their 

associated services. 

Furthermore, agriculture itself contributes significantly to greenhouse gas emissions, thus playing a dual role in 

climate change. On one hand, it serves as a contributor to global warming, while on the other hand, it is directly 

impacted by the adverse effects of climate change, such as reduced crop yields and structural and functional 

damage. Indirectly, climate change also affects crucial elements of agricultural systems, including soils, water 

resources, biodiversity, and overall productivity. 

Given the escalating challenges of climate change, population growth, and limited land resources, it is imperative 

to embrace paradigm shifts in agricultural systems. The conventional approach of expanding cropped areas to 

meet the demand for food cannot be sustained without endangering biodiversity and further compromising the 

fragility of ecosystems. Therefore, the focus must shift towards optimizing agricultural production through the 

application of knowledge and innovative techniques. 

This is where the concept of smart agriculture, supported by Big Data and Artificial Intelligence (AI), emerges as a 

promising solution. With the advent of advanced technologies, a wealth of data is being generated from various 

sources such as on-ground sensors, aerial platforms, satellite imagery, and wearable sensors. The processing and 

analysis of this vast amount of data, in conjunction with AI algorithms, have the potential to provide invaluable 

insights and information to guide decision-making processes and accelerate the transition towards a smarter and 

more sustainable form of agriculture. However, despite the immense potential of smart farming, several 

challenges hinder its widespread adoption. Foremost among these challenges is the issue of data availability, non-

uniformity, and restricted access or sharing. The scarcity of reliable and comprehensive data complicates the 

training of AI models, thereby diminishing their perceived credibility among farmers and livestock raisers who 

remain sceptical due to the lack of tangible evidence of success. Consequently, a bidirectional feedback loop is 

created, with data restriction resulting from the absence of convincing success stories, while simultaneously 

impeding the generation of such success stories. 

Another significant hurdle lies in the complexity of AI models themselves, rendering them difficult to comprehend 

for farmers, especially those who adhere to traditional or inherited practices. The intricate nature of AI algorithms, 

with their underlying statistical and computational complexity, poses a barrier to adoption, as farmers may find it 

challenging to fully trust and understand these sophisticated systems. Bridging this knowledge gap and fostering 

a sense of confidence and familiarity with AI technologies among farmers will be crucial for the wider acceptance 

and implementation of smart farming practices. The future of agriculture is intricately intertwined with the 

pressing challenges of population growth, climate change, and the limitations of land resources. To ensure food 
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security for a burgeoning global population while preserving biodiversity and fragile ecosystems, a paradigm shift 

towards smarter and more sustainable agricultural systems is imperative. The integration of Big Data and AI into 

farming practices holds tremendous potential for optimizing agricultural production, but it also necessitates 

addressing key obstacles such as data availability and accessibility, as well as enhancing farmers' understanding 

and trust in AI technologies. By embracing these transformative changes, we can forge a path towards a resilient 

and efficient agricultural future, capable of meeting the needs of both present and future generations. One of the 

main objectives of AgriDataValue is to strengthen the capacities for smart farming and enhance the environmental 

and economic performance of the agricultural sector. Moreover, AgriDataValue aims to strengthen the capacities 

for climate monitoring, particularly soil & crop conditions in-line with UN Sustainable Development Goals [1]. To 

achieve the above objectives, AgriDataValue will work toward the development of the required technological 

innovations. However, the real impact will be achieved by the dissemination or the project results and the creation 

of a universal ecosystem that is aware of the technological and strategic achievements. Moreover, the 

AgriDataValue consortium partners are committed to promote the project outcomes among the relevant 

stakeholders and has developed a comprehensive dissemination and communication plan, which is targeted 

towards achieving smart farming and protection of the climate and the biodiversity. 

The current version of Deliverable D1.1 aims at providing user-centric requirements reflecting both the views of 

the end-users as well as of other stakeholders that are located further down in the value chain, as explained later 

in section 1.1. The purpose of this version is to refine the requirements as had been described in the DoA, based 

on the experiences during the initial 4 months of the project. The document also provides insights from other 

initiatives and projects such as DataBio [2], IoF2020 [3], A-FarCloud [4] and DEMETER [5], and by that sets the 

foundations for a more detailed analysis of the requirements throughout the project life time until Ver. 2 at M30. 

D1.1 is the first version of the User requirements capturing and analysis, while D1.2 will be the second version, 

where refinements and update of the end-user requirements will be provided as product of various discussions 

and feedback from the initial data capturing process. In addition, more end-users (not involved in the project) are 

expected to be interviewed and comment on the results of the first year’s demonstrations. Finally, the feedback 

in AgriDataValue’s social media channels will be analysed. The user requirements in this document will be 

reflected in T2.2 Architecture Requirements and definition work.  

1.1 Intended Audience 

The audience of the deliverable will be the various stakeholder groups that have been identified as AgriDataValue 

platform potential users. As such, at the first stage of the description of the user requirements, it was necessary 

to prioritize the end-users who will have the greatest impact on the definition and development of AgriDataValue 

platform during the project. These users are categorized into five main groups, namely: (1) individual farmers 

and/or farming companies, including both crop and livestock production, (2) farming (applied) and climate 

monitoring research institutes, including universities and scientists, (3) Specialized service and technology 

providers, such as SMEs that aim to offer services based on Agri-data and AgriDataValue technology, (4) Common 

Agriculture Policy (CAP) paying authorities though out Europe that aims to offer new tools to fairly apply the EU 

CAP 2023-2027 policy, and finally (5) EU policy makers and authorities that monitor implementation of the EU 

strategies towards a climate neutral economy, reducing the CO2 footprint and implementing the EU soil strategy. 

Farming companies, especially those that provide the pilot sites for implementing and validating the 

AgriDataValue use cases and test scenarios, are considered to be the users with the highest priority, but it is 

necessary to consider that activities such as decision support and data analysis are in some cases outsourced. 
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Moreover, in our vision of farmers are future Agri-meteorology Data/ML models prosumers, the framing 

companies may in some cases overlap with agriculture development service providers SMEs.  

In the first phase of requirements gathering we focused on users who were able to effectively provide feedback 

during the initial months of AgriDataValue project and will be included as testing cases of the AgriDataValue 

platform. These were users who are members of the AgriDataValue Consortium or have a direct link to the 

members of the consortium. Besides, with the advancing activities of the AgriDataValue project and the availability 

of dissemination materials, we have had the opportunity to focus on wider user base and update the user 

requirements after performing the first trials.  

1.2 Document overview  

The deliverable D1.1 structure is divided into 8 chapters. 

Table 1 - Structure of AgriDataValue Deliverable D1.1 

 Chapter title Summary 

Chapter 1 Introduction By 2050, with a population of over 10 billion, agricultural production 
needs to increase by 65% to feed everyone. Challenges like limited land, 
water waste, fertilizer use, and climate change require a shift to smarter 
agriculture using Big Data and AI. AgriDataValue aims to enhance smart 
farming, disseminate results, and create a universal ecosystem. 

Chapter 2 User-centred 
requirements 
methodologies 

This chapter explores the methods of gathering end-user requirements 
for the AgriDataValue platform. Persona development is used to 
identify users, and the process progresses from use cases to meet their 
requirements. Accurate understanding of user needs is crucial for 
system development. Efficient requirement gathering methods are 
necessary for the platform's success. 

Chapter 3 AgriDataValue Use 
Cases 

In a user-centric approach, AgriDataValue introduces use cases to 
capture platform requirements. The Lean Multi-Actor Approach (LMAA) 
facilitates interactions and knowledge sharing among various actors. 
AgriDataValue implements LMAA through comprehensive use cases, 
co-creation of tools and AI models, pilot testing, and stakeholder 
feedback. The Agri-Environmental Big Data Space (ADS) platform is 
divided into the ADS Core (data storage, processing, AI/ML training, and 
decision support) and the ADS Marketplace (enabling innovative 
business models and data/ML model sharing). 

Chapter 4 GAP Analysis in 
Agri-Environment 
Data Management, 
Processing & 
Storage 

Digital transformation in the agrifood sector requires frameworks for 
data exchange, information organization, and clear responsibilities. 
Digital platforms should facilitate data access, foster data economy, and 
enable interoperability. Selecting the right platform is challenging due 
to the variety of options available. Aggregating existing platforms is 
crucial for data exchange. Addressing data interoperability, 
governance, and ownership is essential. The FAIR principles and data 
sovereignty play key roles. This section explores related projects and 
initiatives, focusing on data management. 

Chapter 5 Climate change-
agriculture nexus 

In this chapter a summary of the climate change agriculture nexus in 
Europe is given. Trends of scientific literature will be evaluated, and an 
analysis of existing models and tools will be done. Through a 
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classification by typology, advantages, disadvantages, limits and 
potential will be detailed. 

Chapter 6 Data models and 
systems 

This chapter focuses on data interoperability in the AgriDataValue 
project, emphasizing essential components and frameworks for 
seamless data exchange. Robust data models and systems are crucial 
for organizing and representing agricultural data consistently. The 
chapter provides insights and guidelines for effective data 
interoperability within the project, addressing challenges within the 
project's ecosystem and external dataspaces. The goal is to advance 
smart farming and sustainable agricultural practices. 

Chapter 7 User and System 
Requirements  

User requirements are generated aiming of addressing the specific 
needs and challenges and technical requirements for each use case 

Chapter 8 Meta-Architecture 
Considerations 

AgriDataValue adopts a multilevel architecture with a focus on data 
sovereignty, locality, and traceability. The project aims to develop a 
secure and trustworthy platform that leverages federation and 
decentralized processing. It will be an open-source, privacy-preserving, 
and federated AI-based platform capable of capturing and managing 
agri-environment data from diverse sources. The platform will enable 
secure and GDPR-compliant interoperability and data sharing among 
end-users, industries, and organizations. 
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2 User-centred requirements methodologies 
The purpose of this chapter is to examine the different methods in gathering end-user requirements. End-user 

requirements are one of the vital pieces to ensure the success of a system, a platform, or a project, thus the 

success and the effectiveness of the AgriDataValue platform. To ensure the optimal requirements are received, 

the methods in which those requirements are obtained are equally important.  

The first step into this process is to find out, identify and describe who the users of the AgriDataValue platform 

would be. One suitable technique for this task is the Persona development. The purpose of personas is to create 

reliable and realistic representations of the key audience segments for reference [6]. As such, personas are 

fictional, representative stand-in users for one segment of a systems target audience, who help with making sure 

that the system: 

• Is designed for the user, not the technology provider or the scientist/researcher, 

• See the target users as real people, with real stories and real needs, 

• Implement a role-play end-user behaviour 

This preliminary step would better shape the characteristics of the systems' users and ultimately improve the 

effectiveness of the user requirement gathering process which is the next step. Figure 1 provides a hierarchy of 

the different types of requirements. We start our research from the UCs that we have already identified in the 

project and provide very important but less details requirements, as they remain at user perception of the system. 

Then we move in a top-down approach to meet the end-user requirements. It should be emphasised that 

AgriDataValue “end-users” go well beyond the farmers and the farming companies to capture the complete 

farming & climate monitoring stakeholders’ ecosystem. Finally, at the lower and most detail level, we meet the 

actual functional and non-functional ADS platform requirements, which WP2-WP4 will be requested to 

implement.  

 
Figure 1: Hierarchical representation of the considered requirements 

It is well agreed that insufficient efforts during the user and system requirements capture and analysis phase or 

the design phases of a system development life cycle often leads to errors in developed and deployed systems. 

Research in the industry indicates that the majority of problems encountered in complex ICT systems arise from 

poorly defined requirements. By comprehending users' needs accurately, the development team can provide a 

system that caters to their requirements. Hence, to ensure that the AgriDataValue platform succeeds and 

functions effectively, it is crucial to carry out the user requirement gathering process efficiently and coherently, 

while considering any limitations that may exist, to meet the AgriDataValue's user-centric demands. Thus, we 

initially provide an overview of the different methods for user requirement gathering. 
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2.1 AgriDataValue Actors 

In order to gather inputs for D1.1, and more importantly, understand the needs of the different stakeholders, five 

actors’ categories have been identified: 

Category 1: Farming companies, cooperatives, and individual farmers. Most of the user requirements is focused 

on this category, who are considered as main users from our point of view and their requirements have the highest 

impact on AgriDataValue platform definition and development. 

Category 2: Farming (applied) and climate monitoring research institutes, including universities and scientists. 

Entities in this category are also considered to be among the main users. In addition, personnel working at these 

entities may be involved in other projects in the agricultural or climate monitoring domain, which means that they 

have relevant perspectives in this regard. 

Category 3: Specialized service and technology providers offering added valued services based on Agri-data and 

AgriDataValue technology. This category of entities refers to companies (mainly SMEs) that supply or support 

entities mainly in Category 1, which means that they do have a clear understanding of the challenges in agriculture 

processes. This category is highly relevant in this context since their success is closely linked with the emerging 

business opportunity, to some extent through innovations, connected with AgriDataValue platform. Services and 

products in this context may be software solutions, IoT/sensor manufacturers and various kinds of advisory, 

analytical, or other services to farms during or after the AgriDataValue project. The aim of the AgriDataValue is to 

increase overlapping between Category 1 and Category 3, converting farmers to data/ML models/farming advice/ 

warnings prosumers.  

Category 4: CAP paying authorities. This category of entities refers to national or regional Common Agriculture 

Policy (CAP) paying authorities that aim to offer new tools to fairly apply the EU CAP 2023-2027 policy. Though in 

most cases the tools for 2023 are already in production phase, news policies and monitoring tools will be required 

the next years to realize and monitoring the CAP priorities. 

Category 5: EU policy makers. This category of entities refers to stakeholders, EU policy makers, authorities that 

monitor implementation of the EU strategies and decision makers. towards a climate neutral economy, reducing 

the CO2 footprint and implementing the EU soil strategy. 

 

Table 2. Explanation of the Actors categories and roles 

Actor Categories Role index Role explanation 

Category 1: Farming 
companies, Cooperatives, 
and Individual Farmers 

1.a 

Company owner/manager. This person makes strategic decisions 
for the company/cooperative, runs the company/ cooperative in 
an economically and environmentally sustainable manner, and 
maintains a good working environment. 

1.b 

An agronomist/livestock specialist. This is a trained person, with 
a scientific background, who has knowledge of the production and 
based on his/her decision may apply a process or a sub-process to 
a specific crop or to the livestock. 
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Actor Categories Role index Role explanation 

1.c 
The Employee/worker. This person offers hands on realization of 
the processes e.g., controls a machine or drives a tractor, flies a 
drone to collect data, feeds and inspects the animals. 

Category 2: Farming 
(applied) and climate 
monitoring research 
institutes, including 
universities and scientists 

2.a 

Project/group/Task leader with objectives that correspond to a 
manager. This role has some similarity to 1.a, but refers to a 
person at the university or institute department that has reduced 
for decision capacity. 

2.b 
Senior researcher. A person who drives the research, designs and 
coordinates experiments and other research activities, evaluates 
the result, etc. similar to 1.b. 

2.c 
Junior researcher or technical personnel. A person who usually 
does hands on activities and routine research tasks, similar to 1.c. 

Category 3: Specialized 
service and technology 
providers offering added 
valued services based on 
Agri-Environmental data 
and AgriDataValue 
technology 

3.a 
Company owner/manager. This is the company (SME) owner or 
the Technical Director and has a role similar to 1.a 

3.b 

Agriculture scientist, agronomist/livestock specialist domain 
specialist. A person with strong knowhow and experience in the 
agriculture sector or with agricultural background working for 
service and technology providers. Corresponds to 1.b or 2.b. 

3.c 

SW/HW Engineer or Data Scientist. A person who is involved in 
research and development of the added valued services, with a 
scientific background in SW/HW engineering, mobile Apps 
programmer, AI/ML and Big data analysis expert, geo databases, 
(satellite) image processing. S/He works in collaboration with 
people from 3.b to realize the ICT part of the offered service. 

3.d 

Assistant working with R&D&I. A person who is involved in 
research, development and operation/support of the services. 
People with this role usually need assistance from 3.b and 3.c for 
at least part of their work and may perform ICT HW/SW services 
installations/ deployment/ maintenance at the farm/field. 

Category 4: CAP paying 
authorities 

4.a 
Authority General Manager. This is the person that has the overall 
responsibility of the authority and has a role similar to 1.a 

4.b 

Domain Director. A person with strong knowhow and experience 
in the CAP strategy and processes and has the responsibility for 
realizing specific sub-processes of the CAP e.g. monitoring, eco-
schemes, IT support, on-site inspections.  

4.c 

SW Engineer/Data Scientist or Assistant. An employee with a 
scientific background, who is involved in the day-by-day 
development, deployment and support of the authority’s 
operations on CAP policies/strategies realization. 
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Actor Categories Role index Role explanation 

Category 5: EU 
stakeholders/ policy 
makers  

5.a 

Stakeholder, Strategy/Decision Maker. This is a stakeholder that 
has the authority of decision making or voting for a strategy 
making at local, territory, country or EU level. In many cases, a 
member of a parliament or a political person with strong authority. 

5.b 

General/Domain Specific Secretary, Director or Advisor. This is a 
person with scientific background and public administration 
expertise that has the responsibility to propose methods and 
procedures to realize a CAP policy, design and implementation of 
CAP strategic plans (CSPs) 

5.c 
Secretary/Director Assistant. This is a person that communicates 
with the national or local CAP authority to supervise and 
coordinate the CAP implementation. 

Note: In some companies one person may have multiple roles. Similarly, in some cases, one question may be 

relevant for several roles represented by different individuals. 

2.2 Users' requirements gathering methods 

There are many methods to collect information. This section describes some of the most widely adopted ones. 

2.2.1 Interviews 
Conducting interviews is a fundamental method of obtaining information about an information system. Interviews 

can provide a comprehensive understanding of the stakeholders' roles, the end users’ requirements and how they 

consider interacting with the system. There are various types of interviews, such as structured, unstructured, or 

semi-structured, which can be conducted in either a group or one-on-one setting, or even a combination of both, 

along with observation. A good strategy for the reviewer to gather valuable insights about the platform and its 

essential capabilities is to ask questions that allow the collection of “stories”. Employing this strategy can be 

advantageous in comprehending the project's value. 

In general questions that an interview may include are categorized in two group: 

• Open-ended questions are these types of questions that require the interviewee to explain or describe 

his/her thoughts and cannot be simply answered with a “yes” or “no”. Open-ended questions allow 

consultants to ask follow-up questions or request for an example in order to obtain more detail. As an 

example, an open-ended question may be “What are the main problems that you face on your daily 

routine?”  

• Close-ended questions can also be useful when the interviewer is looking for a specific answer. They can 

provide specific answers for the interviewee to choose from, in formats including true or false or multiple 

choice. Although close-ended questions do not provide as much detail as open-ended, they can be useful 

to cover more topics in a shorter amount of time. As an example, close-ended questions may be “What is 

the average amount of arable crop your produce per hectare?”, “What is the average volume of fertilizers 

you annually use per arable crop per hectare?”, “How many animals are treated per day?” Once the 
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questions have been established, it is a good practice to provide the questions to the interviewee prior to 

the interview, in the event that the interviewee needs to prepare them. 

 

For privacy and GDPR issues, the interviewer should obtain permission from the interviewee that recorders may 

be used. This is especially important in case of open-ended questions to ensure that if details are missed while 

taking notes, they could easily be retrieved. At the end of the interview, the results should be provided to the 

interviewee, for confirmation of their responses. 

Some general directions for an effective and successful interview could be: 

• What are the biggest challenges in your day-by-day routine?  

• To ensure focus on future and not current state, questions could be in the form: To your opinion, how 

would an ideal solution look like? 

• Post interview questions could be in the form: What problems is the project technology trying to address? 

How might the project/platform meet this need? Where would the results be visible? Who will use this 

feature? What is the result of doing this? What’s next? 

Interviews may be organised wither in One-on-One base or as Group Interviews: 

• One-on-one interviews is a frequently used method of gathering user requirements, construct use cases 

and represent one of the primary sources of requirements. To conduct an effective interview, preparation 

is essential, and the analyst should identify stakeholders to be interviewed, such as users, managers, 

directors, stakeholders, decision makers and actual end-users who are involved in day-by-day operation, 

interact with the current system and will be the users of the new one.  

• Group interviews are similar, except there is more than one person being interviewed. Group interviews 

work well when the interviewees are at the same level or position. A group interview also has an 

advantage when there is a time constraint as the interviewees in many cases enter a brainstorm mode, 

complementing each other’s answers. More thoughts and discussions can be generated, as someone in 

the group may state or suggest an idea that may have been overlooked by others, which in turn can lead 

to a discussion or provide more information on a particular issue. A major disadvantage can be scheduling 

the interview. When more than one person is involved, it may be difficult, or become time consuming, to 

establish a date and time that works well for all parties. 

 

2.2.2 Questionnaires/Surveys 
Questionnaires and Surveys are useful tools offering the advantage of gathering information from many persons 

in parallel in a relatively short time and of being less biased in the interpretation of their results. This technique is 

especially helpful when stakeholders are geographically dispersed, or when input from many respondents is 

needed to establish system requirements.  

However, it is crucial to select the right respondents and design effective questionnaires to ensure successful 

information collection. As shown in Table 2, AgriDataValue considers different types of end-users, with quite 

different roles. Since users typically only use a subset of system functions, features, or processes, it is quite unlikely 

that a single questionnaire will fit all users. To conduct an efficient survey, the analyst should properly group the 

users and create different questionnaires for each group. While questionnaires and surveys are quantitative 

methods that offer less flexibility compared to qualitative methods like interviews, they can still be effective, as 

long as the analyst properly generate the questionnaires’ structure. When constructing a questionnaire, the 

analyst can use general guidelines such as asking "how, where, when, who, what, and why" questions. For 
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example, "How will you use this feature?" "How can we meet this business need?" "Where would the user access 

this feature?" When designing questionnaires, the analyst should consider at least the following issues: 

• The ambiguity of questions. Is the question clear to the person that is fulfilling the questionnaire?  

• Consistence of respondents’ answers. Has the person taking the questionnaire the knowledge to answer? 

• What kind of question should be applied, open-ended or close-ended? 

• What is the proper length of the questionnaires? 

 

2.2.3  End-users Observation 
Obtaining reliable information from people can be challenging, even when they are sincere and try to be accurate. 

People may not always have a precise understanding of their actions or behaviours, particularly with infrequent 

events, past issues, or topics that generate strong emotions. Nonetheless, observation may provide the analyst 

with a immediate understanding of how users interact with current system and could interact with a future one. 

By observing users, the analyst can gain insights into how they perform their tasks, how their surroundings affect 

their interaction with the system, and what their requirements might be. This can be especially helpful when 

stakeholders struggle to articulate their needs clearly. Nevertheless, observation has some limitations, such as the 

potential for observation to influence people's behaviour and the time-consuming nature of this technique. 

Additionally, people may not behave as they typically would in the observed setting, leading to biased information. 

Last but not least, it is only specific end-user categories that may apply in this category, while many others, such 

as decision makers, may not even apply to this method. Therefore, when observation is utilized, it should be 

preferably performed in a complementary way to information gathered through other techniques. 

2.2.4  Analyse existing system/solution documentation 
By examining an existing system/solution, a system analysts can find out details about current systems and the 

processes that an organization uses today to solve a problem. Analysts can extract various valuable pieces of 

information from documents, such as issues with current systems, possibilities for meeting new requirements, 

organizational priorities that can impact system requirements, and reasons for the design of current systems.  

However, it may be quite challenging for an analyst to understand in detail an existing system in short time. 

Moreover, there may be discrepancies between the systems documentation and the actual systems in use, as 

updates may have not been well reflected in the documentation. This is because of limitations in formal 

procedures, individual work habits and preferences, resistance to control, and other factors that contribute to the 

existence of informal systems. Thus, analysts should be aware of these potential discrepancies when reviewing 

official documentation. 

2.2.5 Mock-up/Prototyping 
Mock-ups and prototypes are means of exploring an idea before it is implemented. Most system developers 

believe that the benefits from mock-ups and early usability tests may be at least an order of magnitude greater 

than those from late usability data. Mock-ups and prototypes allow end users to see how their basic requirements 

are interpreted by the analysts and realized. After viewing and testing the prototype, the users usually adjust 

existing requirements to new ones. Instead of a simple mock-up, a more specialised approach is the so-called Joint 

Application Design (JAD), which is a facilitated, team-based approach for defining the requirements for new or 

modified information systems. The main idea behind JAD is to bring together the key users, managers, and system 

analysts involved in the analysis of a current system [7]. Though JAD may provide excellent results, it is not widely 

accepted in modern system design due to practical implementation constraints and increased cost.  
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The goal of using a mock-up or an early prototype to support requirement determination is to develop concrete 

specification for the ultimate system. Prototyping is mainly useful for analysing requirements which are 

ambiguous or not well-defined, and tools and data are readily available to rapidly build working systems. Though, 

prototyping is not a suitable solution in the AgriDataValue system context for all user categories, nevertheless, it 

can be a useful addition to enhance the effectiveness and accuracy of the final product (component, service) for 

technical and development-specific user teams.  

2.2.6 Comparison of users' requirements gathering methods 
When choosing a user’s requirements gathering and determination method, there are various aspects that should 

be considered. [8]. Table 3 provides a comparison of the five previously discussed requirements determination 

methods based on these aspects. 

Table 3: User requirements capturing methods comparison 

Characteristic Interviews Questionnaires 
End-user 

Observation 
Existing system/ 
solution analysis 

Mock-Up/ 
Prototyping 

Information 
Richness 

High 
Medium to 

Low 
High Low Medium to High 

Time Required Can be High 
Low to 

Moderate 
Can be High Medium 

Moderate to 
High  

Expense Can be high Moderate Can be high 
Low to 

Moderate 
High 

Chance for 
Follow-up 

Good Limited Good Limited Good 

Confidentiality 
Interviewee is 

known to 
interviewer 

Respondent 
can be 

unknown 

End-user and 
observer are 

known  
Depends  

End-user and 
analyst are 

known 

Involvement 
of Subject 

Interviewee is 
involved and 
committed 

No clear 
commitment 

Interviewees 
may not be 
committed 

Depends 
Users are 

involved and 
committed 

Potential 
Audience 

Limited Audience, 
but complete 

responses  

Audience can 
be large, but 

no committed 

Limited 
audience, type 

and detail 

Limited 
Audience in 

volume and type 

Limited Audience 
in volume and 

type 

 

2.3 Gathering methods used in AgriDataValue  

In AgriDataValue we used a combination of the aforementioned techniques to gather the first set of meaningful, 

useful and effective user requirements. First, one-on-one interviews were organised with the scenario leaders of 

the project pilots and the use cases. All pilots have presented their pilot locations, the daily problems and what 

AgcriDataValue could offer to them, Next, a number of questionnaires were prepared and sent to the partners in 

the project that fit under one of the user categories defined as AgriDataValue users in Table 2. Regarding users’ 

observation, we consider that this input was covered by the category 2 (farming research institutes) and category 

3 (service and technology providers) users that are part of AgriDataValue as they are used to working closely with 
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farmers. Finally, existing solutions from the open market along with documentation from other projects and 

initiatives like DataBio, IoF2020 and A FarCoud were analysed.  

For the refinement of the requirements, we plat to implement early mock-ups and prototypes and then perform 

additional interviews with farmers and stakeholders from all countries that are involved in the project. It should 

be considered that by including the pilot owners in the AgriDataValue project, we introduce combined approaches 

of capturing end users’ requirements, which are finally converted end user needs. 

2.3.1 Description of Questionnaires 
Until this phase of the project, we had two inquiry rounds in which we asked the agricultural project partners 

questions about their pilots, use cases and technologies to be used. 

For the first round we used Microsoft Forms as a tool to create a survey for the pilots. Microsoft Forms offers 

several advantages for conducting surveys: 

1. Ease of use, as it allows users to create surveys quickly and easily 

2. Integration with Microsoft Excel, so easy data collection and analysis 

3. Microsoft Forms can be accessed from any device with an internet connection, including desktops, 

laptops, tablets, and smartphones. Respondents can conveniently complete surveys using their preferred 

devices. 

4. Real-time response tracking: Forms provides real-time response tracking, allowing survey creators to 

monitor responses as they come in. This feature enables quick analysis and decision-making based on the 

collected data. 

5. Microsoft Forms supports various question types, including multiple choice, text entry, rating scales, and 

more. It also allows for creating branching logic, where respondents are directed to different sections or 

questions based on their previous answers. These features enhance the flexibility and customization of 

surveys. 

This survey was structured to get a good overview of all contact information, the overall status of the pilot, the 

expected technologies to be used and the expected timelines of pilot development. 

The results of this first round were used to create a detailed Microsoft Excel file for the second round of inquiry. 

This spreadsheet provided a good overview of all pilots, use cases and agricultural partners. A separate tab was 

created for each pilot, and it had to be filled in by the pilot leader. At this stage it was important to seek 

confirmation of the findings from the first round, or to find further depth. This depth was requested on the 

following aspects: 

1) type of crops or livestock 

2) per use case the technologies used 

3) per technology used the output in terms of data and information 

4) per type of data/information the way it is available to the farmer and for professional use in an ICT context. 

Based on these 2 rounds, an overview could be made of all the use cases covered in the pilots. This corresponds 

to the table of contents of sections 3.1 to 3.5. In addition, this outcome was used to create both tables in Section 

3.8.1. 
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3 AgriDataValue Use Cases 
In order to best capture the AgriDataValue platform requirements in a use centric approach, we introduce a 

number of Use cases that represent real needs of the involved end-users. As a methodological approach and based 

on lessons learnt, success methodologies and open innovation ecosystems supported by EC (both DG Agriculture 

and DG Connect) and Local Action Groups, AgriDataValue project will follow the Lean Multi-Actor Approach 

(LMAA). LMAA was introduced by H2020 project IoF2020 and further developed by EIP-AGRI [9]to foster the 

development of research, uptake innovations into operational applications and create real impact in agri-

environment domain. It is worth underlining that most of the AgriDataValue consortium members have been 

IoF2020 partners and have participated in the definition or at least are already familiar with the LMAA 

methodology. 

AgriDataValue LMAA will introduce new use cases, support new ideas and create a wide range of field tools, thanks 

to interactions between complementary actors, share of knowledge, expertise and capabilities. We plan to adopt 

LMAA as fully demand-driven approach, involving during each iterative cycle of AgriDataValue lifetime, various 

actors (i.e. farmers, farmers' groups and cooperatives, foresters and forestry groups, advisors, stakeholders, 

researchers, CAP paying authorities, decision making bodies, etc., as described in Table 2) to demonstrate on one 

hand, how the project fulfils the proposed objectives, needs, problems and opportunities of the full chain, from 

farmers to service advisors, suppliers and stakeholders, and on the other hand, how it complements existing 

research, innovation and best practices.  

 
Figure 2: LMAA adapted to AgriDataValue concept 

The AgriDataValue MAA is implemented through requirements and specifications extracted from comprehensive 

use cases originating from AgriDataValue end-users (WP1), a complete set of tools and AI models co-created with 

technological partners and end-users (WP2-WP3) and fully tested and validated through the project pilots (WP4). 

Feedback from pilots via the human interaction with all stakeholders is further utilized to extend and upgrade 

sensors and pilots (WP5) and create real impact, not only to agriculture, but also to the greater public (WP6).  

In the analysis that follows, we organize the Use Cases (UC) in Clusters based on the crop or livestock that they 

target. Moreover, we offer an interaction analysis of each UC in a UML-like [10] Use Case Diagram approach. For 

better analysing of the UC analysis, Agri-Environmental Big Data Space (ADS) is logically split in two main 

components: a) the ADS Core (ADS-C) and b) the ADS Marketplace (ADS-M). 

 
Figure 3: Agri-Environmental Big Data Space (ADS) platform High level logical separation 

• The ADS Core (ADS-C) is the logic segment where all data is stored and processed. It follows by definition a 

distributed architecture and multiple logical instances may be hosted by different actors, i.e., end-users or 

services providers. Besides the heterogeneous data repositories, the ADS-C also includes AI/ML training logic 

and the Decision Support System (DSS). 

Multi-Actor Approach 
Methodology

By involving multiple 
actors increase the quality 
of the results and the
adoption probability.

Lean Start-up Approach 
Methodology
By realizing small circles of 
development minimize the 
resources and increase the 
success probability.
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• The ADS Marketplace (ADS-M) is the logical segment that enables the realization of innovative business 

models and turns end-users (e.g., farmers) to data/ML models prosumers. The ADS-M includes mechanisms, 

such as blockchain technology/inter-DLT and smart contracts for exposing available data/ML models/advice 

and enables traceability and sharing under specific conditions (e.g., a monthly or per usage fee). 

Detailed considerations based on the Use Cases analysis and System requirements is provided at chapter 7. 

3.1 Use Cases Cluster 1: Arable Crops  

The UC Cluster 1 is focused on Arable Crops and aims to optimize the quality and quantity of the crops, while 

lowering the environmental footprint.  

Objectives: In detail, the objective of UC Cluster 1 are to:  

• Optimize the quality and quantity of the arable crop production  

• Reduce environmental footprint and increase environmental sustainability of the crop production 

• Optimize the natural resources utilization by reducing the wasted irrigation water, reduce or replace 

chemical fertilizers with organic ones, reduce or replace chemical the pesticides with organic ones, reduce 

the consumed energy and/or increase the renewable energy mix.  

Approach: The approach to realize the UC cluster 1 objectives is to combine agricultural knowledge, historical 

data, (real-time) ICT systems and Big Data processing technologies such as IoT sensors, edge cloud, 

drones/satellite visual/multispectral images and AI models and train ML-based Decision Support Systems (DSS) 

and applications to provide advice on improved crop production. 

3.1.1 UC 1.1: Reduce Wasted irrigation water 
Objective: The main objective of UC1.1 is to increase crop production, while reducing wasted water and improving 

the automation of the irrigation zones through interoperable remote-control systems and robust management. 

Real-time monitoring and control of water supply adapted to the conditions required by the irrigated crop and 

the environmental conditions/forecasts to balance water consumption, reduce wasted water and energy 

consumption based on informed decisions and crop automation. 

3.1.1.1 State of play 
One of the most common irrigation models is the mass balance method (also called scientific irrigation scheduling), 

where irrigation schedule is determined by calculating how much water is needed based on accurate soil moisture 

readings and the soil properties. Parameters that are considered in irrigation schedule are:  

• Soil saturation where all the soil pores are filled with water. This 

occurs in the unsaturated zone above the water table after a heavy rain 

or irrigation event.  

• Field Capacity (FC) refers to the amount of water left in soil after 

gravity drains saturated soil. Soil moisture values above field capacity 

will drain downward recharging the aquifer/water table.  

• Permanent Wilting Point (PWP) refers to the amount of water in soil 

that is unavailable to the plant. When the soil water content reaches 

this point, plants die. 

 
Figure 4: Soil Water Content [12] 
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• Allowable Depletion (AD) represents the 

amount of soil moisture that can be removed by 

the crop from the soil before the crop begins to 

stress. 

• Maximum Allowable Depletion (MAD) is the 

fraction of the available water that is 100% 

available to the crop. MAD can depend on soil or 

crop type (Table 4) [11]. 

• Lower soil moisture Limit (LL) is the soil 

moisture value below which the crop will become 

stressed because it will have insufficient water. 

When the lower limit is reached, it is time to 

irrigate. The LL is a very important value because 

dropping to or below this value will affect the 

health of the crops.  

The equations below show how to calculate the lower 

soil moisture limit and the soil moisture target for 

irrigation optimization. 

AD = (FC – PWP) x MAD 

LL = FC – AD 

It should be underlined that the soil type/texture and 

the crop root depth play a very important role in 

defining the FC, PWP and AD (Table 29) [12]. 

Today, there are many commercial or experimental 

irrigation systems that offer remote control and 

irrigation management, aimed in an optimized water 

management. However, most of these irrigation 

systems are closed or proprietary solutions that do not 

share software or hardware elements, limiting their 

options of modification or extension with new 

features. In some cases, they may offer a proprietary 

API for extracting some historical data, though in most 

cases, they do not meet any interoperability or data sharing standard as they are designed not to be interoperable, 

or interwork with 3rd party applications.  

In addition, the majority of these irrigation systems have a limited lifespan of around 8 to 10 years, making them 

highly susceptible to obsolescence. As a result, upgrading these systems can be challenging and expensive, often 

requiring identical equipment to ensure compatibility, further exacerbating the economic burden. Moreover, due 

to lack of openness and interoperability, irrigation components (i.e. pumping stations, irrigation branches and 

hydrants) do not exchange useful information to optimize exploitation.  

3.1.1.2 Target Scenario and Approach 
Most commercial and off the shelf irrigation control systems are developed by specific manufacturers which are 

reluctant to allow external users and other 3rd parties to modify their configuration or operation mode. Though, 

most of these systems do not follow specific interoperation standards, they may offer APIs so that gathered 

 
Figure 5: Soil Texture 

 
Table 4: MAD and Effective Root Dept per Crop  

Crop
Maximum Allowable 

Depletion (MAD)

Effective Root 

Depth (Inches)

Apples 75% 36

Blueberries 50% 18

Carrot 50% 18

Cauliflower 40% 18

Cucumber 50% 24

Grass 50% 7

Green beans 50% 18

Leafy greens 40% 18

Peppermint 35% 24

Potatoes 35% 35

Strawberry 50% 12

Sweet corn 50% 24

Table beet 50% 18

Winter squash 60% 36
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historical data may be extracted. This fact may allow farming companies and irrigation communities to expand 

their irrigation system with different vendors’ devices, having a heterogeneous environment but with the 

capability of interoperating with all the devices responsible for the irrigation. 

The use of open and standard technologies provides a significant advantage regarding how systems can interact 

and interoperate. Though nowadays there is still no consolidated standard for remote monitoring and control for 

irrigation, there is a number of ISO stable standards [13] [14] that specify irrigation techniques. 

In AgriDataValue approach, we plan to use an extended set of real-time and historical IoT sensor data (e.g. soil, 

leaf, air data), weather forecast and drones’/satellites visual and multi-spectral data to extract indices such as 

NVDI and degree days, calculate evapotranspiration and automate irrigation in a closed loop approach.  

3.1.1.3 Interaction Analysis 
Figure 6 provides the interaction analysis of UC 1.1 in a UML like Use Case Diagram approach. All main  

 
Figure 6: UC 1.1 Interaction Analysis  

The UC interaction Analysis is quite similar to other UCs. Actor 1 provides to ADS-C: a) raw IoT Data, such as local 

micro-climate data (rain volume and Precipitation data, wind direction and volume, air temperature and 

humidity), soil moisture and temperature, leaf wetness, along with volume and schedule of the consumed 

irrigation water and b) crop stage feedback, informing the system on the crop growth stage and feedback on 

irrigation advice. Moreover, via the ADS-M may offer historical Big Data and semi-trained irrigation ML models, 

under specific incentives/ fee. The ADS platform responds with Irrigation Advice and if available may offer 

automatic Irrigation control. Actor 2 (farming and climate monitoring research institutes) receives any type of 

historical data, weather data and drones/satellite data, along with trained ML models. In return, Actor 2 offers 

more advanced or experimental ML models, which may be utilized by Actors 1 and 3.  Actor 3 (Specialized service 

and technology providers offering added valued services based on Agri-data and AgriDataValue technology) access 

the ADS platform only via the ADS-M component. Via specific smart contracts may retrieve or provide any type of 

shared data, information or advice, including historical shared data, drones’ and satellite’s data, irrigation advice 

and ML trained models.  
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Actor 4 (CAP paying authorities) directly via the ADS-C module imposes to the platform specific irrigation policies 

(such as eco-schemes) and retrieves individual irrigation statistics to be used when calculating the CAP national/ 

regional supporting funding. Finally, persona from both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve 

regional irrigation statistics to evaluate the fulfilment level of specific CAP policies/strategies, including soil 

strategy objectives.  

3.1.2 UC 1.2: Reduce Fertilizers 
Objective: The main objective of UC1.2 is to reduce fertilizers without reducing crop production or quality. The 

ideal fertilization of the soil is highly dependent on the specific needs of the crop, soil characteristics and 

environmental conditions. An approach to reduce fertilizers should take these parameters into account and be 

flexible to accommodate unpredicted changes. 

3.1.2.1 State of play 
Growth and yield of the crop are limited by the nutrient that is least available 

in the soil or by environmental conditions such as water, light and 

temperature (Liebig’s law, Figure 7) [15]. Providing plants with more nitrogen 

when they are limited by another nutrient is therefore futile. Excess 

quantities of a nutrient can be detrimental for crop growth, as they may 

inhibit uptake of other nutrients. Farmers are therefore encouraged to take 

soil samples that provide a full chemical analysis of all nutrients present [16].  

Fertilization increases crop yield but this is not a linear response. When 

extreme high quantities of fertilizer are added, the crop yield will no longer 

increase (Figure 7). The yield could even decrease, when adding excess 

nitrogen to plants, they become more vulnerable to diseases and plagues. 

Adding higher concentrations, especially of nitrogen and phosphorus, than needed by the crop is detrimental to 

nature. These compounds are mobile in the soil and move to the aquifer and surrounding water bodies. This can 

enable microalgae to bloom, a phenomenon called eutrophication that is harmful for biodiversity and aquatic life 

[17, 18].  

During the growing season plants take up nutrients from the soil. When these crops are harvested, these nutrients 

are permanently removed from the soil. [19] When these nutrients are not replenished by fertilizer, we risk 

depletion of our fertile soils and progressive yield losses in subsequent years [20]. One measure that can reduce 

the use of fertilizers and the risk of nitrogen leaching 

is working towards higher organic carbon 

concentrations in the soil. Soils with higher organic 

carbon concentration have a higher buffering capacity 

for nutrients. Higher organic carbon stimulates the 

mineralization process, needing less nitrogen 

fertilization. Another advantage of carbon farming is 

the fixation of greenhouse gas, carbon dioxide, from 

the atmosphere. However, working towards a higher 

organic carbon concentration takes time [21].  

Another measure that can optimize or potentially 

reduce the use of fertilizers is precision agriculture. In 

precision agriculture, the fertilizer is not evenly 

distributed across the field but is applied zone-specific based on task maps. The zones that are deemed to need 

 
Figure 7: A schematic 

representation of Liebig’s law 

 
Figure 8: Yield response to nutrient supply  
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more fertilization, receive higher concentrations. There is still some discussion about the strategy for this place 

specific fertilization. Some advice to fertilize more on the less developed places in the field, this is called the Kings 

scheme. A common argument for this strategy is that this will make the field more homogenous. You can also 

apply the opposite strategy, wherein you fertilize more on the more developed places in the field, called the Robin 

Hood scheme. Nitrogen is not always the reason for lesser crop growth, so applying more could result in higher 

nitrate leaching instead of higher yield. Task maps are often based on satellite imagery, crop scans, soil scans, 

yield maps or soil texture maps. The companies that offer these scan services, often provide services to render 

task maps. However, combining data sources, especially from different providers, proves difficult. This data is 

often spread across different agridata platforms in varying data formats or geographical projections and farmers 

face difficulties to combine these information sources [22, 23, 24, 25]. 

3.1.2.2 Target Scenario and Approach 
We plan to improve the current fertilisation advice by taking into account satellite imagery and weather forecasts. 

With satellite imagery, we can assess crop growth and adjust the fertilization advice to the actual nutrient needs. 

The weather forecasts can predict the future crop growth, based on historical data. The fertilisation advice should 

include a long-term vision for carbon farming, improving soil properties and microbial life.  

Farmers have many available data layers of each field, such as satellite imagery, drone imagery, soil scans, crop 

scans and yield maps. Viewing and comparing each layer is not only a time-consuming activity but also a difficult 

one. There are geographical software solutions with which you can view these layers, but these have a steep 

learning curve. Often the data is delivered to the farmer as pdf rapports or with an online platform by the provider, 

making it impossible to load the data into other platforms. In AgriDataValue we plan to create a platform in which 

the data layers can be accessed by the farmer and clustering methods can be applied to define management 

zones. This can allow the farmer to make task maps and optimise or reduce fertilisation usage.  

3.1.2.3 Interaction Analysis 
Figure 9 provides the interaction analysis of UC 1.2 in a UML like Use Case Diagram approach. Actor 1 provides 

the ADS-C with a) raw IoT Data, such as local micro-climate data (rain volume and Precipitation data, wind 

direction and volume, air temperature and humidity), soil or tissue nutrient balances and the schedule with 

fertilisation rates that were applied and b) crop stage feedback, informing the system on the crop growth stage 

and feedback on the fertilisation advice. The ADS-M can provide historical Big Data and semi-trained fertilisation 

or clustering ML models under specific incentives or fees. The ADS platform may in turn provide fertilisation 

advice that accounts for seasonal or geographic variation in crop nutrient needs.  

Actor 2 can interact directly with the ADS-C and receive historical data, weather data, remote sensing data and 

crop- or soil scan data. Trained ML models can also be shared, which Actor 2 may improve or expand. These can 

improve models can be used by Actors 1 and 3. 

Actor 3 (Specialized service and technology providers) access the ADS platform only via the ADS-M component. 

Via specific smart contracts may retrieve or provide any type of shared data, information, or advice, including 

historical shared data, drones’ and satellite’s data, Fertilisation advice and ML trained models.  

Actor 4 (CAP paying authorities) imposes to the platform specific fertilisation policies and retrieves individual 

fertilisation statistics to be used when calculating the CAP national/ regional supporting funding. Finally, persona 

from both Actor 4 and Actor 5 retrieve regional fertilisation statistics to evaluate the fulfilment level of specific 

CAP policies/strategies, including soil strategy objectives. This information is very sensitive and will/can only be 

shared if agreed to by the farmer.  
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Figure 9: UC 1.2 interaction analysis 

3.1.3 UC 1.3: Reduce Pesticides 
Objective: Analysis of usage tactics and disease prediction based on yield growth, temperature, wind volume, 

rain/humidity, and heating/cooling degree days to utilize pesticides only when needed. 

3.1.3.1 State of play 
Today, it is very important to grow healthy crops with as little adverse impact on agroecosystems as possible and 

to promote the use of smart control mechanisms. One of the most difficult aspects in winter wheat cultivation 

technology is the spread of leaf and ear diseases. The need to control diseases is determined by the dynamics of 

their development and impact on winter wheat yield and, consequently, on the level of profitability. 

The time and dose of the fungicide in a given year should be chosen depending on the prevalence of diseases, 

which depends on several factors, including meteorological conditions. Main wheat diseases (at least in Latvia are:  

• Tan spot (Pyrenophora tritici-repentis). The first symptoms of wheat leaf yellowing are small, brown spots 
with a light centre. From the very beginning, a pale-yellow band forms around the spot. Later it becomes 
darker yellow. The spots become larger and grey in the middle, but a small dark spot forms in the centre. The 
fungus requires 6-24+ hours of moisture to infect a leaf. This means that rain, significant dew, or high canopy 
humidity are factors that can lead to infection. Optimal temperatures for symptom development range from 
16 to 28 °C  

• Septoria leaf blotch (Zymoseptoria tritici). The first symptoms of wheat leaf spotting in winter wheat usually 
appear on the lower leaves already in autumn as grey-brown spots with black dots (pycnidia). Later, grey, 
elongated, veins-limited spots with black pycnidia appear on the leaves. Favourable conditions for Septoria 
leaf blotch: Humidity on the leaves, which lasts for more than 20 hours; The rains over 10 mm fallen within 
24 hours, or the sum of the precipitations fallen during 3 consecutive days which exceed 10 mm of rain 
favours the development of disease; Rainy weather at the early stages; Susceptible varieties; Wheat after 
wheat; Minimum tillage; Infected plant debris on soil surface. 

• Wheat yellow rust (Puccinia striiformis). Yellow rust infects all above-ground parts of the plant. Signs of the 
disease are bright yellow pustules arranged in straight rows, parallel to the veins of the leaves. The disease 
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usually occurs early in the growth season, when temperature ranges between 2 and 15 °C; but it may occur 
to a maximum of 23 °C. High humidity and rainfall are favourable conditions for increasing the infection on 
both leaf blade and leaf sheath [26], even on spikes [27], when in epidemic form. Symptoms are stunted and 
weakened plants, shrivelled grains, fewer spikes, loss in number of grains per spike and grain weight. Losses 
can be 50%, but in severe situations 100% is vulnerable. Since yellow rust can occur whenever the wheat 
plants in green and the environmental condition conducive for the spore infection, yellow rust is a severe 
problem in the wheat-producing regions worldwide. Temperatures during the time of winter wheat 
emergence and the coldest period of the year are crucial for epidemic development in winter-habit wheat 
crops. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) 

Figure 10: Wheat diseases. From left to right a) Pyrenophora tritici-repentis, b) Zymoseptoria tritici, c) Puccinia 
striiformis, d) Puccinia triticina, e) Blumeria graminis, f) Parastagonospora nodorum, g) Fusarium spp 

• Wheat leaf rust (Puccinia triticina). Brown rust infects the leaves and spikes. The signs of the disease are 
orange to brown pustules, chaotically distributed over the entire leaf plate. The germination process requires 
moisture and works best at 100% humidity. Optimum temperature for germination is between 15–20 °C. 
Before sporulation, wheat plants appear completely asymptomatic. 

• Powdery mildew (Blumeria graminis). Powdery mildew can be observed on the leaves, stems and ears of 
plants. The first signs of the disease are white web-like frost. At first, they are individual pustules (pads), but 
later they can cover the entire leaf. Later, in the light frost, dark balls are visible - fruiting bodies, in which 
asci spores develop. Powdery mildew is an obligate parasite with a narrow specialization. Each cereal species 
has its own form of powdery mildew. Powdery mildew of wheat thrives in cool, humid climates and 
proliferates in cloudy weather conditions. The pathogen can also be an issue in drier climates if wheat fields 
are irrigated. Ideal temperatures for growth and reproduction of the pathogen are between 16 °C and 21 °C 
with growth ceasing above 25 °C. Dense, genetically similar plantings provide opportune conditions for 
growth of powdery mildew.  

• Parastagonospora nodorum. Wheat leaf spot mainly damages the spikelet’s and can also penetrate the grain. 
Symptoms of the disease also appear on the leaves as grey (brownish grey) spots with brown dots (pycnidia). 

• Fusarium head blight (Fusarium spp). The symptoms of Fusarium head blight are very visible when the wheat 
is ripe. Damaged areas are lighter. In the case of a strong infection, an orange plaque of various shades can 
be observed on the spikes. In some cases, it can also be seen on the grain. It is a fast-growing fungus, usually 
able to grow up to 8-8.8 cm in diameter within four days. Its optimal growth temperature ranges from 22.5–
27.5 °C, with the minimum and maximum temperatures required for growth being 2.5–7 °C and 35 °C, 
respectively. The minimum humidity level required for vegetative growth is 88%. 
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Factors affecting the development of diseases ¨The development of winter wheat diseases is influenced by a 

number of factors, among which are the following [28] 

• Crop phase and development stage (BBCH): please refer to Figure 11. 

• Agrometeorological parameters (the amount of precipitation, air temperature, humidity, number of rainy 

days by time period, etc.); 

• Previous crop (wheat / another crop); 

• Soil tillage type (tilling / no-tilling); 

• Wheat variety (Skagen, Edvins, Brons, Mariboss, Talsis, Rotax, KWS Malibu, Fredis, Ceylon, Creator, 

Zeppelin, Fenomen, Patras, SW Magnifik, Famulus). 

Steam Extension Heading Flowering Ripening 

    
30-49 

9 stages of cereal 

development: 30, 31, 

32, 33, 37, 39, 45, 47, 49 

51-59 

4 stages of cereal 

development: 51, 

55, 57, 59 

61-69 

3 stages of cereal 

development: 61-63, 

65, 69 

70-79 

stages of cereal 

development: 70-79 

Figure 11: Development Phases of Wheat  

3.1.3.2 Target Scenario and Approach 
This Use case will focus on the most popular in Latvia variety - Skagen. The farmers by implementing preventive 

measures that ensure the normal growth and development of plants (plant change, soil treatment, variety 

selection, optimal sowing or planting time, fertilizing), can reduce multiplication of harmful organisms and crop 

infection or even prevent. By observation stage – crop monitoring in order to observe the appearance of the 

harmful organism and the dynamics of its spread, taking into account also the distribution of its natural enemies, 

and to make a correct decision on the necessary measures to control harmful organisms at a certain stage of 

development of the crop and the harmful organism. Direct plant protection measures provide justified use of plant 

protection products based on the data obtained from field observations on the appearance of harmful organisms, 

development dynamics and multiplication at a critical level. 

Within AgriDataValue, we plan to study and analyse IoT data and images from various sources in order to 

forecast/detect Winter wheat diseases and adapt fungicide spraying recommendations. 

3.1.3.3 Interaction Analysis 
Figure 11 provides the interaction analysis of Winter wheat pest control UC in a UML like Use Case Diagram 

approach. All main actors/ end-users participate at the specific UC. 
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Figure 11: Winter wheat pest control UC Interaction Analysis Diagram 

As can be seen, Actor 1 interacts both directly with the ADS-C and the ADS-M logical components. Actor 1 provides 

to ADS-C: a) raw IoT Data, such as local micro-climate data (rain volume and precipitation data, wind direction 

and volume, air temperature and humidity, leaf wetness), possible soil data (soil moisture and temperature), 

wheat growing phase and stage, previous crop (wheat or other crops), soil tillage type and b) Crop stage feedback, 

informing the system on the Wheat disease stage and feedback on spraying advice. Moreover, via the ADS-M 

Actor 1 may offer historical Big Data and semi-trained winter wheat disease detection ML models, under specific 

incentives/ fee. The ADS platform responds with Spraying Advice and potentially pest control strategy. To 

facilitate research and experimentation, Actor 2 (farming and climate monitoring research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, weather data, along with trained ML 

models. In return, Actor 2 offers more advanced or experimental ML models, Wheat disease detection and control 

experiments at laboratories, which may be utilized by Actors 1 and 3.  

Actor 3 (Specialized service and technology providers) access the ADS platform only via the ADS-M component. 

Via specific smart contracts may retrieve or provide any type of shared data, information or advice, including 

historical shared data, spraying advice or services and ML trained models.  

Actor 4 (CAP paying authorities) imposes to the platform specific spraying policies (such as volume and type of 

fungicides) and retrieves individual wheat disease statistics to be used when calculating the CAP national/ 

regional supporting funding (e.g., in case of AgriDataValue certified wheat disease, sampled physical inspections 

may be reduced). Finally, both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve regional winter wheat 

diseases statistics in order to evaluate the fulfilment level of specific CAP policies/strategies, including soil strategy 

objectives.  

 

3.1.4 UC 1.4: Increase potato production/quality 
Objective: Optimizing the potato crop cultivation and quality using hyperspectral measurements to measure 

potato quality, allowing for modifications in the production processes to mitigate losses due to quality issues.  
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3.1.4.1 State of play 
Potato crops are an essential part of the European agriculture. In 2020, 55 million tonnes of potatoes were 

harvested across the European union, with an estimated value of EUR 12.3 Billion. This represents 3.1% of the 

total EU agricultural output of 2020 [29]. Climate change is one of the biggest challenges for the potato crop 

cultivation. Due to its shallow root system, potatoes are particularly sensitive to continued droughts. The more 

prevalent droughts during the potato growing season have led to significant crop losses [30, 31]. These more 

prevalent droughts can lead to a higher occurrence of black spot in potatoes as dehydrated tubers are more 

susceptible to these bruises. Blackspot is caused by mechanical impact during harvest and handling. Without 

peeling, blackspot is difficult to detect but can cause significant quality reduction. This black discoloration is 

responsible for considerable economical losses [32].  

Spectroscopy has been increasingly used in food and agriculture as the 

absorption characteristics are related to chemical properties, 

composition and structural characteristics. It can be used in both pre and 

post- harvested crops. The range of the spectral imaging system can 

range from the ultraviolet (UV) to the shortwave infrared (SWIR) region 

[33]. There are multispectral imaging systems consisting of multiple 

bands within this spectrum or hyperspectral imaging systems with 

continuous narrow bands. Hyperspectral imaging can simultaneously 

detect the spectral and spatial properties of an object. While traditional 

detection methods are often destructive and time consuming, 

hyperspectral imaging is a non-destructive and fast detection method 

[34]. Hyperspectral imaging has been suggested to be able to detect 

black spot in potatoes (Figure 12) [35].  

3.1.4.2 Target Scenario and Approach 
In this Use Case we will improve the production quality of potatoes. We will use the newest technologies such as 

hyperspectral imaging to detect the quality of potatoes. Large quantities of data are generated with these imaging 

techniques and this data will be linked to the quality of the potatoes. Detecting the quality is the first step to 

improving the potato production processes. Based on the hyperspectral images, an advice can be created with 

machine learning techniques. For example, detecting black spot in the first potatoes that are harvested can warn 

farmers to take precautions with future harvesting and handling of potatoes to prevent damage.  

The objective determination of quality allows farmers to prove that their products are of a good quality and 

negotiate a better price. Detecting the subpar products can prevent them from being processed with the healthy 

ones and reduce waste and loss of confidence among consumers [35].  

3.1.4.3 Interaction Analysis 
As can be seen, Actor 1 (Cooperatives, and Individual Farmers) interacts both directly with the ADS-C and the ADS-

M logical components. Actor 1 provides to ADS-C: a) raw IoT Data, such as local micro-climate data (Precipitation, 

air temperature and humidity), soil moisture and temperature, leaf tissue or soil analyses, along with the schedule 

of the relevant field activities and b) Potato stage feedback, informing the system on the crop growth stage and 

feedback on advice. Moreover, via the ADS-M may offer historical Big Data and semi-trained ML models, under 

specific incentives/ fee. The ADS platform responds with Advice.  

 
Figure 12: Black spot in potatoes, only 

visible when peeled [32] 
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Figure 13: UC 1.4 Interaction Analysis  

To facilitate research and experimentation, Actor 2 (farming and climate monitoring research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, weather data and drones/satellite 

data, along with trained ML models. In return, Actor 2 offers more advanced or experimental ML models, which 

may be utilized by Actors 1 and 3. Actor 3 (Specialized service and technology providers offering added valued 

services based on Agri-data and AgriDataValue technology) access the ADS platform only via the ADS-M 

component. Via specific smart contracts may retrieve or provide any type of shared data, information, or advice, 

including historical shared data, drones’ and satellite’s data, advice, and ML trained models. Actor 4 (CAP paying 

authorities) directly via the ADS-C module imposes to the platform specific policies (such as eco-schemes) and 

retrieves individual potato statistics to be used when calculating the CAP national/ regional supporting funding. 

Finally, persona from both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve regional statistics to evaluate 

the fulfilment level of specific CAP policies/strategies, including soil strategy objectives.  

3.2 Use Cases Cluster 2: Vegetables 

The UC Cluster 2 is focused on the Vegetables Crops and aims to optimize the quality and quantity of the crops, 

while lowering the environmental footprint.  

Objectives: In detail, the objective of UC Cluster 2 are to:  

• Improve precision irrigation and fertilization, mainly via automatization of irrigation and fertilization. 

• More accurately predict harvesting time to crop increased production/diseases prediction for 

vegetables/arable.  

• Involve IoT sensors, edge cloud, radiation/chlorophyll/pH metering, multiple data platforms with 

geotagged photos alone with drones/satellite multispectral imagery. 

3.2.1 UC 2.1: Precision open field/greenhouse Irrigation/Fertilization 
Objective: Compare open field and greenhouse yields, focused on tomato and cucumber via an innovative fully 

automated sensing/decision/irrigation system. 
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3.2.1.1 State of play 
Protected cultivation of vegetables is constantly evolving to improve production both in quantity and quality and 

to establish strategies that minimize costs per unit of crop. In these production systems, the use of water and 

fertilizers is closely linked, and the application of techniques that increase the efficiency of water use will also 

result in a better use of fertilizers; although it should not be forgotten that the consumption of water and nutrients 

are two different physiological processes.  

In this context, the development stage of the crop and the climatic conditions that surround it will determine 

its nutritional needs. The greenhouse allows the climate inside to be modified within certain margins in terms 

of radiation level, temperature, humidity, and CO2 content, so the scenarios that are generated are multiple and 

the possible interactions between climate and plant will have to be considered when establishing nutritional 

guidelines. The quality of the products is obtained in the field and is not improved by post-harvest, understanding 

by quality both the intrinsic characteristics (colour, flavour, nutritional content, etc.) and the extrinsic 

characteristics, which are becoming increasingly important, such as obtaining products free of residues and in a 

sustainable way with non-polluting techniques, including the reuse of leachates and the reduction in nitrogen 

input. Factors that increase crop quality, such as water stress and salinity, normally reduce yields, so it will be 

necessary to establish a compromise between yield and quality. Nutrient management must ensure a profitable 

level of production as well as safe, nutritious, healthy, and tasty products. 

3.2.1.2 Target Scenario and Approach 
The profitability of protected cultivation of horticultural crops is increasingly associated to the efficiency in the 

use of resources (mainly water and fertilizers) than to the aim of obtaining a high production. The increase in the 

price of water and fertilizers, the environmental burden involved in obtaining them and the need to control soil 

and groundwater pollution have contributed to the search for strategies that contribute to increase this efficiency 

without negatively affecting fruit production. The conditions generated under greenhouse cause physical-

chemical properties of the soil to change rapidly due to high temperatures and high inputs of both water and 

fertilizers, to maintain an intensive crop with considerable nutrient extraction. The soil solution under greenhouse 

is easier to control than in the open field, due to the absence of rainfall and the usual practice of simultaneous 

water and fertilizer inputs throughout the crop cycle. In many cases the Ca, Mg and S content in the soil and water 

and sometimes even the immobilized P in the soil are sufficient to compensate the crop needs. In the initial phase 

of the crop cycle is when the greatest N losses occur due to the contribution of organic matter and the first planting 

irrigations. Substrate crops are usually open systems with a washing fraction ranging between 30 and 50% and 

represent one of the sources of groundwater pollution and eutrophication, so the reuse of leached solutions is 

presented as an alternative to increase the efficiency in the use of fertilizers while contributing to the reduction 

of environmental pollution, especially by nitrates. 

On the other hand, the use of sensors and processes automation provides an additional advantage in terms of 

input savings, yields and fruit quality, because the real needs of the crops are known. In this context, tomato 

and cucumber are two relevant crops in Southeast Spain, where, under protected cultivation and the adoption of 

some sensors, we can highlight: 

• Tomatoes grow at relatively warm temperatures, making them the perfect crop for greenhouses. Compared 

to growing tomatoes at open field, growing in a controlled greenhouse increases yield and quality, reduces 

pests and diseases, and increases the growing season. As concrete data, there are yield averages for tomato 

plants, which are as follows: quantity of tomato per hectare in open-air plantations is 50-75 tons, vs 

approximately 120 tons under greenhouse (approximately, 50% more). 

• The main objective of protected cultivation of cucumber and the control of the parameters described 

(irrigation, fertilization, climate…) is to achieve off-season harvesting, in other words, that plants produce in 
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winter periods. However, there are also other advantages: increase in crop earliness, shortening its vegetative 

cycle; increased yields (with increases of 70% in comparison to open field); higher crop quality, producing 

healthier and more uniform fruit; and better control of pests and diseases, with stronger and healthier plants. 

3.2.1.3 Interaction Analysis 
There are several technologies available to the farmer (Actor 1) to support irrigation and fertilization management. 

The irrigation operation in farms can be automated using programmers, but there are recommendation systems 

through the web and other channels that can provide the irrigator with an estimate of the needs in his plots. Actor 

2; farming and climate monitoring research institutes, will provide working tools to Actors 1 and 3. 

Similarly, the advance of ICTs facilitates the use of sensors, their processing and visualization regardless of 

geographical location, but the application of optimal irrigation is limited by the laboriousness and excessive 

knowledge required by irrigators. Moreover, in commercial irrigation plots, the distribution in irrigation sectors 

and the spatial variability further accentuates the complexity of decision making. A reasonable objective would 

be to provide the farmer with tools that facilitate and even free him from making decisions on day-to-day irrigation 

practices, supported by available technological innovations. Here, Actors 4 and 5 will benefit of different irrigation 

and fertilizers usage statistics.  

 

Figure 7. UC2.1 Interaction Analysis Diagram. 

3.2.2 UC 2.2: Increase leek /root-crops(carrots) production/quality 
Objective: Validate and improve the simulation model for fertilisation rates in leeks (ECOFERT model) by analysing 

historical data and applying the model to a new scenario.  

3.2.2.1 State of play 
About thirty years ago, the European Commission placed a limit on the amount of nitrate in surface and 

groundwater of 50 mg NO3 L-1 to prevent both detrimental effects on the environment and human health. Today, 

the limit is still exceeded in many regions, especially those with intensive vegetable production (e.g. leek, 
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cauliflower etc.). The combination of the shallow rooting system of vegetables and excessive fertilizer usage 

frequently results in many cases in high mineral N residues [36, 37, 38]. 

To reduce nitrogen leaching, soil-based recommendation systems were introduced, such as KNS [39], N-expert 

[40] and N-min [41]. Besides the fertilisation rate, the application method (e.g. site-specific application with 

variable fertilizer rates) also affects the effectiveness of the fertilization. Nkebiwe et al. [42] identified three 

advantages of localised fertilizer application compared to broadcasting: (i) higher yield, (ii) higher nutrient 

concentration in the above-ground biomass, (iii) higher nutrient uptake.  

However, several simulation studies concluded that year-to-year weather variation leads to considerable variation 

in the effectiveness of the improved N-management. Therefore, the aim of the WikiLeeks project (HBC.2017.0819, 

funded by the Flemish Agency of Innovation and Entrepreneurship, 2019-2023) was to investigate the 

effectiveness of a soil-based advisory system, applied specifically to leek production, to reduce fertilizer use, 

residual soil nitrate and so nitrate leaching, while maintaining similar biomass production levels compared to a 

fixed high fertilisation rate under varying weather conditions using a simulation model. Therefore, the ECOFERT 

simulation model was used to accurately simulate leek cultivation under varying fertilisation rates, application 

methods and weather conditions. This study showed that soil-based fertilizer recommendations and localised 

fertilizer application have the potential to reduce the environmental impact of intensive vegetable production 

[43]. However, variable weather conditions can indeed affect the effectiveness of the advisory system as the 

fertilizer dose calculation depend among other on assumptions regarding crop N-uptake and mineralisation. So, 

further analysis of the available data, including multispectral drone data (Figure 14), is crucial to predict accurate 

these properties, with the aim to further improve the effectiveness of the advisory system.  

 

Figure 14: Multispectral drone flight in leeks 

3.2.2.2 Target Scenario and Approach 
To reduce nitrogen leaching without quality or yield losses, a correctly calculated fertilisation is a necessity. Not 

only the dosage is of importance but also the timing. The nitrogen release should match the plants growth. The 

existing models take into account soil characteristics but not weather forecasts and remote sensing imagery such 

as satellite imagery and drone imagery. In AgriDataValue we will analyse historical data. This includes sensitive 

data so permission from the farmers who own the data is essential. We will validate the current advice generated 

by the model and if necessary, improve the model by including remote sensing imagery and weather forecasts.  

The AgriDataValue project will monitor leeks to provide new data, including soil scanning, multispectral drone 

imagery, climate data and soil analyses. With this new data, the model can be improved and validated.  
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3.2.2.3 Interaction Analysis 
As can be seen, Actor 1 (Farming companies, Cooperatives and Individual Farmers) interacts both directly with the 

ADS-C and the ADS-M logical components. Actor 1 provides to ADS-C: a) raw IoT Data, such as local micro-climate 

data (air and soil temperature, precipitation), soil moisture and temperature, along with rate and schedule of the 

applied fertiliser and b) crop stage feedback, informing the system on the crop growth stage and feedback on 

fertilisation advice. Moreover, via the ADS-M may offer historical Big Data and semi-trained Fertilisation ML 

models, under specific incentives/ fee. The ADS platform responds with Fertilisation Advice. 

To facilitate research and experimentation, Actor 2 (farming and climate monitoring research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, weather data and drones/satellite 

data, along with trained ML models. In return, Actor 2 offers more advanced or experimental ML models, which 

may be utilized by Actors 1 and 3.  

Actor 3 (Specialized service and technology providers offering added valued services based on Agri-data and 

AgriDataValue technology) access the ADS platform only via the ADS-M component. Via specific smart contracts 

may retrieve or provide any type of shared data, information, or advice, including historical shared data, drones’ 

and satellite’s data, fertilisation advice and ML trained models.  

Actor 4 (CAP paying authorities) directly via the ADS-C module imposes to the platform specific irrigation policies 

(such as eco-schemes) and retrieves individual fertilisation statistics to be used when calculating the CAP 

national/ regional supporting funding. Finally, persona from both Actor 4 and Actor 5 (EU stakeholders/ policy) 

retrieve regional fertilization statistics to evaluate the fulfilment level of specific CAP policies/strategies, including 

soil strategy objectives. This information is very sensitive and will/can only be shared if agreed to by the farmer. 

 
Figure 15: UC 2.2 interaction analysis 

3.2.3 UC2.3: Optimization of Soluble Solids Content 
Objective: Detection of soluble solids content focused on tomatoes through non-destructive methods in situ (non-

harvested fruits) may have significant impact in quality (°Brix). 
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3.2.3.1 State of play 
Total Soluble Solids content, parameter expressed as °Brix, today is a fruit quality parameter today commonly 

quantified with an optical digital refractometer (Figure 16). This is a destructive technique due to the juice must 

be extracted from the fruits evaluated. This parameter is used to determine the content of soluble solids (usually 

sugars) dissolved in a liquid. For example, a solution of 30 °Brix contains 30 grams of soluble solids dissolved per 

100 grams of solution or liquid phase. The Brix scale is routinely used in the food industry to quantify the 

approximate sugars amount in different types of drinks such as fruit juices, wine or soft drinks.  

 

Figure 16: Optical (left) and digital (right) refractometer to measure Total Soluble Solids content in fruits (°Brix). 

3.2.3.2 Target Scenario and Approach 
In addition to the technique described above, NIR (near infrared) spectrometry is an innovated option frequently 

used in Agriculture. Spectrometry is the measurement of the amount of energy absorbed by a chemical system as 

a function of wavelength. The infrared region of the electromagnetic spectrum comprises the area between the 

visible range and microwaves and is divided into three regions: near, middle and far, depending on the 

wavelength. In the case of NIR spectrometry, the wavelength ranges from 780 to 2,500 nanometers (nm). 

NIR spectrometry is based on the application of infrared radiation on a matrix or sample to be analysed. Depending 

on the nature of the bonds (-CH, -NH and -OH) of the molecules that make up the sample to be analysed, it will 

absorb a certain amount of energy. This technique is based on the Lambert-Beer Law, i.e., the amount of energy 

absorbed by the sample is directly proportional to the concentration of the sample components. Both qualitative 

and quantitative information can be obtained with this technique, although the most widespread analysis is the 

quantitative one. This is performed by developing calibrations in which, with a reference method, the spectral 

value, and the values of an attribute of the samples are confronted: for example, fat, moisture, acidity. In this way, 

with the calibration and the spectral information we can predict the value of the attribute of interest of an 

unknown sample. In Agriculture, this technology is used to control fruit ripening, which guarantees the 

commercialization of products with optimum quality. 

3.2.3.3 Interaction Analysis 
Temperature is the most influential factor on fruit quality parameters as total soluble solids (TSS), acidity (A), 

colour and fruit size.  

The interaction diagram provides the interaction analysis of the data extraction, analysis and availability process, 

where: farmers (Actor 1) measure the TSS content in fruits and, through the Actors 2 and 3 labours, who process 

and analyse the collected data, Actors 4 and 5 can obtain references and implement improvements in terms of 

fruit quality and, specifically TSS content improvements (Figure 9). They could make decisions not only in terms of 

management strategies, but also through the application of innovative technologies and sensors. 
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Figure 17. Interaction Analysis Diagram 

3.2.4 UC2.4: Automatization of greenhouse windows for climate control 
Objective: Control the greenhouse climate from the selection of the best position of the greenhouse windows. 

3.2.4.1 State of play 
Ventilation is the key process of climate control and plays an essential role in shaping the greenhouse climate. It 

must be borne in mind that any action on the level of ventilation simultaneously modifies the concentration of 

CO2, the temperature and the humidity of the air in the greenhouse. On many farms, it is the only means available 

to the farmer to gain some control over the greenhouse climate under situations where the solar load is high. An 

efficient ventilation system must meet the following criteria: 

• Induce the mixture of indoor and outdoor air. 

• Generate an adequate level of air speed to promote the exchange of energy and mass between the plants 

and the indoor air. 

The movement of air under the greenhouse can be generated by means of fans (forced, mechanical or dynamic 

ventilation), or by using natural ventilation. Ventilation is called "natural" when only natural external forces act 

on the exchange of indoor air with outdoor air. Natural ventilation is achieved with the installation of windows, 

whose driving force is the difference in pressure established between the two sides of the window. This pressure 

difference originates from two different processes: 

• The influence of the wind, which generates a distribution of pressure on the surface of the greenhouse. 

• The influence of the difference in temperature between the interior and the exterior, which generates a 

difference in density and, consequently, in pressure. 

The main problems with greenhouses are the low climate control provided by these structures, so that in most 

cases the interior microclimate is far from optimal. The desired increase in the quality of production requires an 

improvement in greenhouses to achieve greater control of the interior microclimate, and within climate control 

techniques in warm countries, ventilation is surely the most important. 

Until now, most of the climate controllers designed and used in greenhouses are associated with a single control 

variable, temperature, giving rise to single variable controllers. Generally, the control of this equipment is based 
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on the experience acquired over the years in the production area, making use of a series of setpoint parameters. 

However, in most cases these systems cannot reveal stress phenomena in the plantation, not easily detectable by 

the human eye, such as high evapotranspiration, incorrect relative humidity, or poor ventilation management; 

Although they do not cause the crops to die suddenly, they greatly affect their quality of life, and therefore their 

productive yield and the quality of the fruits. 

3.2.4.2 Target Scenario and Approach 
The developments that are intended to be carried out have as their main objective to achieve better climatic 

conditions from a more precise climate control that can control the temperature and humidity of the greenhouse, 

with the premises of being technically efficient. 

As a novelty in the sector, the development of a climate controller based on a non-linear optimization algorithm 

is proposed, which will determine the state of the greenhouse windows that maximizes the photosynthesis rate 

of the crop, in relation to the climatic variables of temperature, humidity and radiation. The algorithm will 

implement crop growth or photosynthesis models. The objective of this algorithm is to execute a non-linear 

optimization sequence, marking as a restriction to obtain the highest photosynthesis value, so that through 

iterations, identify the best combination of window opening values that achieves the highest photosynthesis and, 

in this way, set the new temperature, humidity and radiation setpoints. In this algorithm you can set preferences 

in the actuators that you want to use in relation to others (for example, use roof windows rather than side ones). 

It is important to find the best combination with the least number of iterations and time, to reduce the 

computational cost. 

3.2.4.3 Interaction Analysis 
The following Interaction Analysis (Figure 18) helps to explain the analysis process. There are several technologies 

available to the farmer (Actor 1) to support windows climate control management. The climate control operation 

in farms can be automated using programmers. Actor 2 (farming and climate monitoring research institutes), will 

provide working tools to development of growth models that allow the identification of the most suitable climatic 

conditions within the greenhouse to Actors 1 and 3. 

 
Figure 18: Greenhouse windows’ control Interaction Analysis Diagram 
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UC 2.5: Increase control of agri-environmental for organic farming 
Objective: The main objective of UC2.5 is the real-time monitoring and control of agri-environmental conditions 

adapted to different crops. 

3.2.4.4 State of play 
Monitoring agri-environmental conditions is crucial for the transformation of agricultural production from 

conventional to organic, characterised by high product quality, while minimising negative environmental impact. 

Its aim is the continuous (year-round) production of organic food, featured by a complete absence of chemical 

fertilisers and synthetic pesticides. Fertilisation of the soil in this case is achieved naturally by providing composts 

and other organic matter from plants and animals in order for the soil to naturally nourish the plants. Sustainable 

crop production (permaculture) is a method of growing or harvesting food in an environmentally and ethically 

responsible manner. It involves following agricultural and food production practices that do not harm the 

environment, ensure fair treatment of workers and support local communities.   

Permaculture agriculture is based on the natural conditions provided by a selected area. The basic principle of 

farming in such an area is not to change it, but to adapt to the current conditions, e.g. if there is an alkaline 

substrate, it should not be acidified, but to plant basophilic plants. Permaculture agriculture also has a positive 

impact on water management. It is not only an ecological trend, but a field for scientific research, especially the 

study of the impact of agro-environmental parameters on indigenous crop conditions. 

Most of Poland's soils are light, with sandy, permeable ground. Climatic conditions are also unfavourable for 

agriculture (shorter growing season and lower rainfall). The productivity of a site is influenced by, among other 

things: humus content and quality, soil pH, nutrient abundance. The right fertilisation can determine the yield by 

as much as 40 - 50%, so it is important on organic farms to systematically monitor the soil nutrient content by 

performing differentiated analyses of the above factors. Taking measurements each time before sowing is very 

time-consuming and not very precise, and does not allow for long-term, more extensive analyses. 

The principle of organic farming is to continuously improve soil fertility and prevent soil degradation.  Correct 

fertilisation on an organic farm should take into account the following factors: 

• regulation of the soil reaction, which is a basic condition for the availability of nutrients (including calcium) to 

the pH level resulting from the agronomic category of the soil,  

• increasing the humus content of the soil to a state defined as medium, i.e., about 1.5-2%, through the use of 

natural and organic fertilizers and a proper crop rotation,  

• balancing nutrients such as phosphorus, potassium, magnesium to a medium class level.  

The expenditure incurred on chemical analyses of soil abundance pays off in the form of:  

• proper plant nutrition and health, resistance to frost, as well as improved quality and increased fruit yield,  

• considerable savings on fertilisers,  

• avoidance of the over-fertilization effects (salinisation and contamination of soils, ground and surface water),  

• lower production costs 

Sustainable crop production differs from industrial crop production, which is generally based on monoculture 

farming (growing only one crop in a large area), intensive use of commercial fertilizers, intensive use of pesticides 

and other factors harmful to the environment, communities and farm workers. In addition, sustainable crop 

production practices can lead to higher yields over time, with less need for expensive and environmentally harmful 

inputs. This production model, combined with mechanisation and automation, guarantees a quality product that 

meets the quality expectations of the modern consumer. 
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Vegetables on raised beds grow much faster, thanks to the higher moisture content, better soil temperature, and 

the decomposition of organic matter allows the crop to grow earlier, extending the growing season. The use of 

weed seed-free substrate means that there is almost no need to weed. In addition, the soil in the boxes is not 

trampled, giving it more airiness. This is a very convenient solution when growing many different vegetables with 

completely different fertiliser requirements. The soil in the box can be replaced at any time, making it easy to 

avoid soil diseases and pests. Therefore, monitoring the condition of the soil and other agro-environmental 

conditions is crucial in organic farming. 

3.2.4.5 Target Scenario and Approach 
The rapid technological development of the agricultural sector requires constant updating of knowledge and skills 

in order to maintain the economic efficiency and competitiveness of farms, especially in the area of advanced 

technologies for quality products. We assume that the implementation of the above objectives will have a 

significant impact on increasing the awareness of rural inhabitants, through the promotion of natural farming 

methods. Developing and then implementing agricultural investments may resolve a problem of optimising an 

agricultural production in local scale and thus helping farmers to run their businesses more efficient and effective. 

Furthermore, creating know-how for organic farms will make organic production even more important on the 

Polish market and thus increase the quality of life in rural areas. 

The environmental monitoring system we aim to develop is designed to continuously measure, i.e., temperature 

and humidity at the most sensitive points. If pre-set alarm thresholds are exceeded, the system should inform the 

user in a manner specified during the device's configuration. It should allow the connection of many other types 

of sensors, and its hardware configuration should be flexible enough to allow the set-up to be tailored to the 

individual user's needs. In AgriDataValue approach, we plan to use an extended set of real-time and historical IoT 

sensor data (e.g. soil data) and weather forecast. 

3.2.4.6 Interaction Analysis 
Figure 19 provides the interaction analysis of UC 2.5 in a UML like Use Case Diagram approach.  

 
Figure 19: UC 2.5 Interaction Analysis  
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schedule of the relevant field activities and b) Crop stage feedback, informing the system on the crop growth 

stage and feedback on advice. Moreover, via the ADS-M may offer historical Big Data and semi-trained ML 

models, under specific incentives/ fee. The ADS platform responds with Advice. Actor 2 is allowed to interact 

directly with the ADS-C and receive any type of historical data and agri-environmental data, along with trained 

ML models. In return, Actor 2 offers more advanced or experimental ML models, which may be utilized by Actors 

1 and 3. Actor 3 access the ADS platform only via the ADS-M component. Via specific smart contracts may retrieve 

or provide any type of shared data, information, or advice, including historical shared data, drones’ and satellite’s 

data, advice, and ML trained models. Actors 4 and 5 can obtained individual/regional statistics to support the 

decision-making process and to evaluate the fulfilment level of specific CAP policies/strategies.  

3.3 Use Cases Cluster 3: Trees/Vineyards  

The UC Cluster 3 is focused on Tree/Vineyard crops and aims to focus on use cases related to disease/frost 

detection, improve quality of Vegetables Crops and aims to optimize the quality and quantity of the crops, while 

lowering the environmental footprint.  

Objectives: In detail, the objective of UC Cluster 3 are to:  

• Protect the health and quality of fruit trees and vineyards crop.  

• Increase quality and quantity, avoid diseases with less pesticides 

• Foresee and mitigate frost and heil.  

The UC Cluster 3 involve IoT weather/soil sensors, edge cloud, diverse geotagged photos’ datasets, and drones/ 

satellite multispectral imagery. 

3.3.1 UC 3.1: Fruit trees disease forecast/detection 
Objective: The main objective of UC3.1 is to reduce the use of phytosanitary treatments on woody crops (apple, 

peach, pear) using ML models to support farmers decisions. Different data sources will be used to train and use 

the ML models. Field observations of the phenological evolution of plants and of the presence and degree of 

affectation of pest, climatic real, estimated and forecasted data, multispectral images from the Copernicus 

Sentinel 2 satellite constellation will constitute the core of the data. Nevertheless, other data sources, such as 

Spanish Cadastral Registry, will be used during the transformation of the raw datasets from the main data sources 

into the data used to feed the models. We will create phenology and pest risk prediction models because of the 

relationship of the phenology stage at which a phytosanitary treatment is applied and its effectiveness. 

3.3.1.1 State of play 
Phenology, the timing of cyclical and seasonal natural phenomena such as flowering and leaf out, is an integral 

part of ecological systems with impacts on human activities like environmental management, tourism, and 

agriculture. As a result, there are numerous potential applications for actionable predictions of when phenological 

events will occur. However, despite the availability of phenological data with large spatial, temporal, and 

taxonomic extents, and numerous phenology models, there have been no automated species-level forecasts of 

plant phenology. This is due in part to the challenges of building a system that integrates large volumes of climate 

observations and forecasts, uses that data to fit models and make predictions for large numbers of species, and 

consistently disseminates the results of these forecasts in interpretable ways. 

Numerous phenology models have been developed to characterise the timing of major plant events and 

understand their drivers [44]. These models are based on the idea that plant phenology is primarily driven by 

weather, with seasonal temperatures being the primary driver at temperate [45, 46]. Because phenology is driven 

primarily by weather, it is possible to make predictions for the timing of phenology events based on forecasted 
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weather conditions. The deployment of seasonal climate forecasts [47], those beyond just a few weeks, provides 

the potential to forecast phenology months in advance. This time horizon is long enough to allow meaningful 

planning and action in response to these forecasts. Numerous phenology models have been developed to 

characterise the timing of major plant events and understand their drivers.  

Phenological modelling may benefit from advancing parameterisation approaches such as machine learning 

techniques and data assimilation, while at the same time addressing issues related to nonlinear and discontinuous 

phenomena. Furthermore, the introduction of more nonlinearities into model simulations could further reduce 

uncertainties and bias. 

Plant phenology at species-specific level is the consequence from two opposing factors [48]:  

• Intrinsic factors of plants, or characteristics of an individual plant (e.g., genome, age, and evolution within a 

plant community), are associated with biotic potential, photosynthetic activity, absorption of nutrients, 

constructive metabolism, etc.  

• Environmental component is representative of the 

restraints imposed by competition, limited resources, 

stress, respiration, aging, and geospatial factors. Figure 

20 summarizes them. Factors in the triangle show the 

affecting components and factors to control plant 

phenology. Factors outside the triangle display the 

tempo-spatial dimension of plant phenology to address 

all scale issues related to plant. 

Regarding environmental factors, historically phenological 

models were created based on the statistical search of 

correlations between observed phenological state signals 

and land surface phenology (LSP). Because of the difficulties 

to integrate more variables in human driven calculations [49] modelling efforts have generally relied on functions 

(usually linear) of meteorological drivers, such as average temperature and precipitation, growing degree days 

(GDDs), light and temperature, minimum temperature, photoperiod, vapor pressure deficit, or minimum relative 

humidity.  

Nevertheless, there is a lack of understanding on number of important aspects, such us the multivariate influence 

of meteorological variables (temperature, precipitation, solar radiation) driving phenology, or the effect of 

additional drivers in the modelling of autumnal phenophases. A deeper mechanistic understanding of phenology, 

its variability and drivers across multiple scales, and its link to other physiological processes is needed to be able 

to develop predictive models. Although not fully understood, most species in temperate climates adopt a mix of 

signals that fall into three categories: (1) solar signals (photoperiod, irradiance), (2) past seasonal experience 

signals (winter chilling [49]), and (3) current or very recent past signals (concurrent temperature and/or water 

conditions).  

Most studies of LSP analyse trends in phenological events across years. More recent studies present process-based 

models to uncover cause–effect relationships between long-term trends in phenology and its key driving variables. 

These studies focus on trends in phenology produced by trends in weather (mainly warming). However, 

interannual variation in LSP arising because of the inter-annual variability in weather are less studied, with model-

based studies of this phenomenon being scarce. Moreover, many studies investigating the sensitivity of 

phenological events to climate variation use calendar seasonal or monthly mean climatic variables, which operate 

on fixed human calendar scales with a start date of 1 January, instead of using biological scales, for example, time 

 
Figure 20. Factors controlling plant phenology 
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relative to the growing phase of plants [50] or considering where Julian date representation to continuous 

representation of time. 

As current phenology models are based on accumulated temperature forcing, making forecasts requires 

information on both observed temperatures (and other variables) as well as, forecast temperatures (and other 

variables). However, the modelling of inter-annual variation in LSP considering its potentially complicated 

relationship with climate in a multidimensional feature space might not be possible using traditional linear 

regression models. In this sense, phenological modelling may benefit from machine learning techniques such as 

the random-forest (RF) method, reducing uncertainties and bias. RFs have the potential to identify and model the 

complex non-linear relationships between phenology and climate, being able to handle a large number of 

predictors and determine their importance in explaining phenology. RFs have been applied with very promising 

results to other fields of ecology and biological sciences, as well as to the simulation of phenological shifts under 

different climatic change scenarios, but the potential for modelling climate-driven inter-annual variation in 

phenology is still to be explored. 

3.3.1.2 Target Scenario and Approach 
Currently, there are a lot of web services providing information of the climatic conditions, both observed and 

forecasted, together with the derived indexes that can support the decision making of farmers based on the 

location of stations. In addition, the use of multi-spectral satellite images has been tested to remotely monitor the 

development of arable crops and forests. Finally, public authorities, farmers associations and farming 

organizations own datasets of field observations of phenology and the presence of pests. However, these 

observations datasets are not shared to enable their merge with climatic (raw or derived) data or multispectral 

images in order to create ML models to predict phenology of crops or the risk of pest in a more accurate way than 

the derived indexes. 

The goal of UC3.1 is to use the methodology created by ITAINNOVA to create ML models, and existing 

developments to predict the phenology evolution and the pest risks in vineyards to other woody crops. The idea 

is to be able to obtain field observations, climatic data and Sentinel 2 multispectral images of other areas and 

crops through the ADV data space to train and use ML models. We will use data of the crops in Aragón of an 

example of the process.  

3.3.1.3 Interaction Analysis 
Figure 21 shows the interactions between the actors of the UC3.1 at high level.  It identifies 4 main actors.  First, 

they are the data service providers (actor stereotype 3). These are entities which can provide (open) data of 

required datasets such as multispectral satellite images (i.e., Copernicus Sentinel 2), meteo-data (either real 

observations, real estimations, or weather forecasts) or geographical descriptions of the area of interest (i.e., the 

fields under monitoring and prediction).   

The second type of actors are the Farming Entities (actor stereotype 1).  They represent farmers associations, 

cooperatives, private companies, or public authorities which can provide historical field observations.  That is 

phenology records or the presence of pest records.  These entities are expected to have agronomist as members 

of their staff.  They can also play the role of final users: they can take advantage of the intermediate data and ML 

predictive models although they will be interested in high level inspections. 

The third kind of involved entities are the ones being able to train and provide ML models (actor stereotype 3) 

using the data provided by data service providers and the knowledge provided by Farming entities.  They are the 

Model Developers, that is Data scientist.  These actors can transform raw data into intermediate data which can 

be used to create the models (either from scratch or from existing models) to fit the data of a given area and crop.  
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They will produce both model and intermediate valuable data to be used either by the Farming Entities or by the 

Farmers. 

 
Figure 21.  High Level Interactions Between Actors of UC3.1 using ADV Data Space 

Farmers represent the (final) users of the UC3.1 (1).  They will use the trained ML models to make data-based 

decisions on the application of a phytosanitary treatment or not.  To get the phenological and the pest risk 

predictions, they will provide the system with information about the fields they are interested in together with 

information of the field observations of the current season.  These data will be transformed in the same way as 

the data used for training the models by processes implemented by the data scientists. They will receive both the 

results of the predictions as well as the climatic data which will support them.  

3.3.2 UC 3.2: Anti-frost control 
Climate change threatens vineyards in different ways. Global warming, heavy rain in the flowering season, hail 

and frost can affect wine production and quality. Among them, hail is one of the biggest threats that winegrowers 

are facing. A hailstorm can destroy a vineyard in just few minutes. It affects not only the current year but also the 

following year’s growth of the vine.  

3.3.2.1 State of play 
After two years of studying different solutions with different experts to protect vineyards, the Saint-Emilion 

winegrowers voted at the end of January 2021 to set up a community-led hail mitigation system (Selerys system). 

The solution covers the area of 7500 hectares and protects the Lussac Saint-Emilion, Puisseguin Saint-Emilion, 

Saint-Emilion and Saint-Emilion Grand cru appellations. The system is a self-operating instrument remotely 

controlled for aerial cloud seeding. 

The Selerys system is based on 3 components: the hail-risk detection (SKYDETECT RADAR), the physical mean to 

seed the cloud (LAÏCO solution based on self-operating balloons launcher) and the nature of the agent 

(hygroscopic Salt) used to reduce the risk of hailstorm formation.  
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Figure 22. Existing community-led hail mitigation system components 

This system is based on a highly competitive short-range X-Band radar able to provide for local or large territories: 

• A real-time total monitoring of the total half sphere 

• Displaying each cloud’s maximum reflectivity in high definition 

This radar is associated with a data processing algorithm that allows to follow minute by minute the evolution of 

all potentially dangerous clouds in a radius of 30 kms around the radar and to give sufficiently precise information 

to help the winegrowers to intervene or not. 

This system alerts twenty-seven volunteer winegrowers, which are ready for the remote activation of the 37 semi-

automatic balloon launchers spread across the area. Biodegradable balloons inflated with helium are then 

released and sucked up by the updrafts generated by the storms. Once they are in the middle of the cloud, a torch 

releases hygroscopic salt (200g in each balloon), which reduces or prevents the formation of hailstones and causes 

precipitation of rain instead. The whole system is powered by photovoltaic panels. Up to 6 balloons can be pre-

loaded. Additional functions include: 

• Remotely commanded balloons launch through SMS 

• Checks the flares connected to each balloon for safe flights 

• Transmits flight plans to the smart seeding balloons 

• Inflates the balloons with the optimum quantity of helium 

• Launches the balloons automatically once the inflation is over 

• Remote global monitoring (gas, flares & balloons stocks, security checks…). 

 

Area covered by the anti-hail system  

 

Anti-heil balloons launcher system  

 
Figure 23. Existing community-led hail mitigation system components 

The 37 SOBLI are equipped with weather stations. Each station indicates: wind direction, wind strength, 

precipitation and precipitation types, temperatures, pressures. 
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3.3.2.2 Target Scenario and Approach 
The anti-frost/anti-hail system already installed in the vineyards of Saint-Emilion since 2021. Each year, between 

200 and 300 balloons are released and so far, no hail damage has been observed. However, the hail detection 

system is a quite expensive short-range X-Band radar able to provide for local or large territories, offering a real-

time total monitoring of the total half sphere and displaying each cloud’s maximum reflectivity.  

Within AgriDataValue, we will try to study the weather characteristics and combine it with satellite images to 

consider alternative ways of detecting the potentially dangerous clouds, potentially in an even larger geographical 

area.  

3.3.3 UC 3.3: Pest Control on Mediterranean Fruit Fly 
Objective: Ceratitis capitata, known as the Mediterranean fruit fly, or Medfly is one of the most destructive fruit 

pests in the world, infecting more than 200 fruits types. Medfly’s existence in agricultural fields must be monitored 

systematically for effective combat against it. We plan to install IoT and automated capture traps to detect 

existence and build models to predict pest tracking/mitigation.  

3.3.3.1 State of play 
Medfly is one of the world's most destructive fruit pests. Though “Mediterranean”, the pest lives in Africa, Asia, 

West Australia, Central America, Caribbean and South America. In Europe, it is found in Albania, Azores, Balearic 

Islands, Canary Islands, Corsica, Croatia, France, Greece, Italy, Madeira Islands, Portugal, Southern Russia, Sardinia, 

Serbia, Sicily, Slovenia, Spain. Because of its wide distribution over the world, its ability to tolerate cooler climates 

better than most other species of tropical fruit flies, and its wide range of hosts, it is ranked first among 

economically important fruit fly species. Its larvae feed and develop on many deciduous, subtropical, and tropical 

fruits and some vegetables. Although it may be a major pest of citrus, often it is a more serious pest of some 

deciduous fruits, such as peach, pear, and apple. The larvae feed upon the pulp of host fruits, sometimes tunnelling 

through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, 

only the earlier varieties of citrus are grown, because the flies develop so rapidly that late season fruits are too 

heavily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before 

complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly [51]. 

  
Figure 24: Mediterranean Fruit Fly Life Cycle. From left to right a) Egg b) Larvae, c) Pupae in soil, d) Adult Male 

Medfly life cycle takes 28-34 days to complete in summer and 60-115 days in winter [52]. Eggs hatch in 2 to 3 days 

at 26°C, which is optimum temperature. The larvae tunnel throughout the pulp of the host fruit to feed for 6 to 

10 days. Generally, the fruit falls to the ground during or after larval development. The third instar larvae normally 

emerge from the fruit to pupate in the soil. However, pupation may occur anywhere; it is not necessary for the 

larvae to enter the soil to pupate. Adults emerge from the pupal cases in 6-15 days at 26°C. The lifecycle between 

two generations under favourable conditions is 18-33 days. 

Fly activity and numbers are greatest during warmer months. Adult Medflies become active when temperatures 

exceed 12°C. As the temperature rises in spring, increased numbers of adults emerge from the ground and flies 

become active. Adult Medfly may live for two to three months and are often found in the foliage of fruit trees, 
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especially citrus. As long as fruit is present, most Medfly will not move more than 50 metres. The males form 

groups underneath leave and call for females to mate.  

If control is not started at this time, Medfly populations will grow and cause problems later in the season. Today, 

there are available special traps in the field to catch Medflies. Baits can be used in combination with Delta traps 

and funnel traps (Figure 25). The older version of traps used protein baits that captured large numbers of non-

target insects, while new versions use combinations of chemicals to attract male and female fruit flies. Other baits 

traps are equipped with pheromone bait-dispenser for Medflies, for attracting and mass trapping the pest.  

   
Figure 25: Various types of Mediterranean Fruit Fly Traps [53] 

Pheromone baits for Medflies should be checked from time to time and their dose should be reduced or increased 

depending on the density of pests in the controlled area. Several technologically supported automated remote 

monitoring system have been proposed in the literature aiming to eliminate the frequent site visits as a more 

economical solution [54] [55], however their penetration in the market is minimal. 

3.3.3.2 Target Scenario and Approach 
Based on the Medfly lifecycle, studies have shown that insect development is temperature dependent. The egg, 

larval, and adult development is influenced by air temperatures; the pupal development depends on soil 

temperatures [56]. In both environments, a minimum temperature exists below which no measurable 

development takes place. For Medfly, these thresholds are 9.7°C in soil and 17°C in air. In the literature, several 

temperature models for Medfly insect development stages have been proposed to predict their entire life cycle 

[57]. Most temperature models consider the number of days necessary to complete the cycle, the mean monthly 

temperature, and the threshold temperatures to calculate the number of necessary “degree days” to have adult 

insects, with optimal conditions 25±1°C and 65±5% relevant humidity [58]. Additional factors, such as light 

intensity or biotic ones, such as vegetational properties, distribution of resources, or predator pressure may 

drastically modify the evolution of Medfly populations [59]. 

Within AgriDataValue, we aim to reduce the volume of pesticides by implementing ML algorithms to accurate 

predict the Medfly lifecycle and spread, while increasing the confidence of the farmers to the insect prediction 

system. In order to achieve the goal, we plan to utilize existing and install new IoT agri-meteorological stations to 

collect and process air, leaf and soil parameters such as temperature and relevant humidity, along with light 

intensity, to build ML models that will calculate the probability of Medfly appearance. The presence of adult 

Medfly insects as feedback of the ML models will be reported manually, while automated traps that utilize 

cameras to automatically identity adult Medfly insects will be considered. Moreover, in case of Medfly appearance 

in a region, larger geographical models combining wind speed and direction, along with weather prediction 

models and satellite images will be considered to predict the direct of pests spreading.  

3.3.3.3 Interaction Analysis 
Figure 26 provides the interaction analysis of Medfly pest control UC in a UML like Use Case Diagram approach. 

All main actors/ end-users participate at the specific UC.  
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Figure 26: Medfly pest control Interaction Analysis Diagram 

As can be seen, Actor 1 (Farming companies, Cooperatives and Individual Farmers) interacts both directly with the 

ADS-C and the ADS-M logical components. Actor 1 provides to ADS-C: a) raw IoT Data, such as local micro-clima 

data (air temperature and humidity, rain volume and precipitation data, wind direction and volume), soil moisture 

and temperature, leaf wetness and b) Medfly adult insects appearance feedback, informing the system on the 

Medfly lifecycle stage and feedback on spraying advice. Moreover, via the ADS-M may offer historical Big Data 

and semi-trained irrigation ML models, under specific incentives/ fee. The ADS platform responds with Spraying 

Advice and potentially pest control strategy.  

To facilitate research and experimentation, Actor 2 (farming and climate monitoring research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, weather data and satellite data, along 

with trained ML models. In return, Actor 2 offers more advanced or experimental ML models for Medfly lifecycle 

and Medfly population experiments at laboratories, which may be utilized by Actors 1 and 3.  

Actor 3 (Specialized service and technology providers offering added valued services based on Agri-data and 

AgriDataValue technology) access the ADS platform only via the ADS-M component. Via specific smart contracts 

may retrieve or provide any type of shared data, information or advice, including historical shared data, satellite’s 

data, spraying advice or services (e.g., using specialized drone-based spraying) and ML trained models.  

Actor 4 (CAP paying authorities) directly via the ADS-C module imposes to the platform specific spraying policies 

(such as volume and type of insecticides) and retrieves individual Medfly statistic to be used when calculating the 

CAP national/ regional supporting funding (e.g., in case of AgriDataValue certified Medfly, sampled physical 

inspections may be reduced). Finally, both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve regional Medfly 

statistics to evaluate the fulfilment level of specific CAP policies/strategies, including soil strategy objectives.  

3.3.4 UC 3.4: Pest Control on Olive Fruit Fly 
Objective: Bactrocera oleae, known as Olive Fruit Fly, is a species of fruit fly which belongs to the subfamily 

Dacinae [60]. It is phytophagous species, whose larvae feed on the fruit of olive trees, hence the common name. 

It is considered as one of the most serious pests in the cultivation of olives. We plan to install IoT and capture traps 

to detect existence and build ML models to predict pest tracking/mitigation.  
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3.3.4.1 State of play 
The Olive Fruit Fly has been reported in Europe, Africa, the Canary Islands, the Middle East, China, California, 

Mexico, Central America [61]. The predisposition to the flies' attacks is tied to several factors, both intrinsic and 

extrinsic. The main ones are climatic (temperature and rainfall), so marked differences can occur from year to 

year. However, other genetic or agronomic factors should not be overlooked.  

The life cycle of Olive Fruit fly start when the adult females lay their eggs in the summer when the olive is at least 

7–8 mm in diameter. Egg-laying is done by making a puncture with the ovipositor into the skin of the olive, leaving 

only one egg in the hollow below. The bite has a characteristic triangular shape, it is visible to the naked eye and 

is known as “fly bite”. A puncture has a dark green colour, whilst older bites have a yellowish-brown colour 

because of wound healing. The Olive fruit fly egg has elongated and cylindrical shape with approximate dimensions 

of 0.7×0.2 mm. Like other dipterans, larvae are transparent-white, with spindle shape, with very small head and 

the end of the broad abdomen and reach a size of 7-8 mm. Puparium is reddish brown-brown and similar to that 

of a barrel of wood. Finally, the adult olive fly has a length of only 4-5 mm and is somewhat smaller in size of the 

common fly. The body features a varied range of brown tones with a light-coloured triangle on the back somewhat 

yellowish [60]. The size of the females is larger than that of the males and they have an oviscapto (an egg-laying 

tubular structure organ) very appreciable. 

 
Figure 27: Olive Fruit Fly. From left to right A) Egg b) Puparium, c) Adult Male. d) Adult Female 

The life cycle of the olive fruit fly is closely linked to the seasonal development of its main host, the cultivated olive 

(Olea europea), and to the local climate. By late June to the beginning of July as the new olive crop develops, 

females begin to lay eggs and are attracted to the fruit. Although eggs may be laid in small fruit, the larvae do not 

successfully develop until the ripening fruit grows to sufficient size. Eggs hatch in 2 to 3 days, and larvae develop 

in about 20 days during summer and fall. in spring. Pupal development requires 8 to 10 days during summer but 

may take as long as 6 months in winter, as larvae produced during fall, leave the fruit and pupate in the soil where 

they spend the winter; however, some maggots overwinter in fruit left on trees and pupate. Multiple generations 

occur throughout summer and fall. In summer the flies can complete a generation in as little as 30 to 35 days, 

given optimum temperatures (20°C to 30°C). The olive fruit fly has no true period of dormancy, and all stages of 

the insect can occur during winter. Hot (35° to 40°C), dry conditions reduce the build-up of olive fruit fly 

populations [62]. Fruit fly eggs and first instar maggots can experience relatively high mortality during hot, dry 

weather. Adult flies also may die during periods of high temperatures if adequate water and food are not available. 

High olive fruit fly populations have been observed in both coastal and inland areas. 

Similarly, to UC3.3, within AgriDataValue, we aim to reduce the volume of pesticides utilized for Olive Fruit Fly by 

implementing ML algorithms to accurate predict their lifecycle and spread, while increasing the confidence of the 

farmers to the insect prediction system. To achieve the goal, we plan to utilize existing and install new IoT agro-

meteorological stations to collect and process air, leaf and soil parameters such as temperature and relevant 

humidity, along with light intensity, to build ML models that will calculate the probability of Olive Fruit Fly 

appearance. The presence of adult Olive fruit fly insects as feedback of the ML models will be reported manually, 

while automated traps that utilize cameras to automatically identity adult insects will be considered. Moreover, 

in case of insects’ appearance in a region, larger geographical models combining wind speed and direction, along 

with weather prediction models and satellite images will be considered to predict the direct of pests spreading.  
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3.3.4.2 Target Scenario and Approach 
Within AgriDataValue, we plan to study and analyse IoT data and images from various sources in order to predict 

the existence and population spreading of Olive Fruit fly. The interaction analysis diagram is almost identical to 

the Medfly interaction analysis diagram (Figure 26). Again, we consider Actor 1, who interacts both directly with 

the ADS-C and the ADS-M logical components and provides: a) raw IoT Data, such as local micro-clima data (air 

temperature and humidity, rain volume and precipitation data, wind direction and volume), soil moisture and 

temperature, leaf wetness and b) Olive Fruit Fly adult insects appearance feedback, informing the system on the 

Olive Fly fly lifecycle stage and feedback on spraying advice. Moreover, via the ADS-M may offer historical Big 

Data and semi-trained irrigation ML models, under specific incentives/ fee. The ADS platform responds with 

Spraying Advice and potentially pest control strategy.  

Actor 2 receives any type of historical data, weather data and satellite data, along with trained ML models. In 

return, Actor 2 offers more advanced or experimental ML models for Olive Fruit fly lifecycle and population 

experiments at laboratories, which may be utilized by Actors 1 and 3.  

Actor 3 via specific smart contracts may retrieve or provide any type of shared data, information or advice, 

including historical shared data, satellite’s data, spraying advice or services (e.g. using specialized drone-based 

spraying) and ML trained models.  

Finally, Actor 4 imposes to the platform specific spraying policies (such as volume and type of insecticides) and 

retrieves individual Olive Fruit fly statistics to be used when calculating the CAP national/ regional supporting 

funding, while both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve regional Olive Fruit fly statistics to 

evaluate the fulfilment level of specific CAP policies/strategies, including soil strategy objectives.  

3.4 Use Cases Cluster 4: Livestock 

The UC Cluster 4 is focused on livestock and aims to focus on use cases related to reduction of gas emissions, 

reduction of nitrogen deposition, and proactive livestock health/welfare and calving monitoring.  

Objectives: In detail, the objective of UC Cluster 4 are to:  

• Use edge cloud and real-time IoT sensor data (e.g. neck collar, feeders, emission sensors) together with 

GPS location data to monitor the cattle/pig health, activity, feeding and calving 

• Proactively control milk and meat quality 

• Reduce the GHG emissions and nitrogen deposition. 

3.4.1 UC 4.1: Reduce Greenhouse gas emissions 
Objectives: Methane is the major greenhouse gas is livestock. The first source is enteric emissions and the second 

is manure. To tackle the enteric emissions, we implement nutritional strategies that have a potential to reduce 

the methane production. The possible reductions are measured with methane sensors, such as GreenFeeds and 

other multi-gas analysers. Emission calculation is expressed as absolute methane emissions, Methane yield (CH4 

production divide by Dry Matter Intake (DMI)) and methane intensity (CH4 production divide by milk production 

or meat production). We will collect, process and corelate feed, milk, and emissions data in one flow aiming to 

significantly reduce the enteric emissions mainly on cattle. In a latter phase the same can be done for manure 

emissions mainly on pigs. 
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3.4.1.1 State of play 
The European Green Deal sets out the EU’s commitment to shift into a climate neutral economy by 2050, where 

all sectors shall contribute. The 2021 European Climate Law turns this climate neutrality objective into a legal 

commitment to reduce greenhouse gas (GHG) emissions by at least 55% by 2030. Today, livestock producers in 

European union (EU27) 220 Mt CO2e, 163 Mt CO2e comes from CH4 from enteric emissions and 57 Mt CO2e from 

manure management. 

Within AgriDataValue, we aim to reduce the enteric emissions mainly from cattle by nutritional measures by 

implementing ML algorithms to accurate predict the emission reduction of the feed measures. To achieve the 

goal, we plan to utilize existing measurements from existing sensors such as emission measurement, feed intake 

and analysis and milk production parameters, and measurements that become available in the near future, to 

build ML models that will calculate these enteric emissions. 

The same approach will be used for manure, mainly from pigs. To achieve the goal, we plan to utilize existing 

measurements from existing sensors such as emission measurement, feed intake and analysis and manure 

analysis, and measurements that become available in the near future, to build ML models that will calculate these 

manure emissions. 

3.4.1.2 Target Scenario and Approach 
Within AgriDataValue, we plan to study and analyze sensor data from various sources in order to predict the major 

greenhouse gas emission from livestock. Enteric methane prediction studies have shown that enteric emissions 

are total feed intake, fiber intake and additive concentration dependent. 

Unfortunately, historical Big Data of different emission trials are not available. Thus, to achieve the goal, we plan 

to utilize few existing historical data and measurements from existing sensors such as emission measurement, 

feed intake and analysis and milk production parameters, and new measurements as they become available in the 

near future, to build ML models that will calculate the emissions. Additionally, project partners have some semi-

trained ML models that will be further trained in the course of this use case.  

3.4.2 UC 4.2: Reduce nitrogen deposition 
Objectives: The element nitrogen (N) is ubiquitous and necessary for life, but bio reactive components such as 

ammonia, nitrous oxide and nitrate are harmful for the environment when expelled in excess. Therefore 

monitoring these molecules in agriculture is of upmost importance to have an agricultural system that is in 

equilibrium with the environment. We will collect, process and corelate feed, manure and water parameters fine 

tune and improve future manure action plans (MAP). 

3.4.2.1 State of play 
78% of the atmosphere is composed of nitrogen gas (N2) and nitrogen is a necessary building block of all life on 

earth. It is an essential element in plant fertilizers and animal feed. Yet it also causes some intractable 

environmental problems. To be available as a nutrient, it must be converted into a reactive form. The last decades, 

there has been an increase in the formation of reactive nitrogen, through the production of ammonia (NH3) for 

fertilizer, among other things, and through the formation of nitrogen oxides (NOx) from combustion processes 

(energy, industry and transportation). About twice as much reactive nitrogen is now formed annually as would be 

without human intervention. 

As more reactive nitrogen is formed, there are also more nitrogen losses to the environment. A high concentration 

of nitrate (NO3- ) in groundwater and surface water can have a negative impact on drinking water quality. 

Together with phosphates, it causes toxic algal blooms and biodiversity loss in watercourses and coastal areas 
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(eutrophication). Nitrogen oxides (NOx) and ammonia (NH3) are air pollutants in themselves that also contribute 

to the formation of particulate matter and ozone. In addition, these substances have a fertilizing effect on nature, 

affecting nitrogen-sensitive habitats. Nitrogen pollution also contributes to climate change: nitrous oxide (N2O) is 

a powerful greenhouse gas. 

Because agriculture is an economic activity that largely takes place in an open system that interacts with soil, 

water and air, it is an important contributor to nitrogen pollution. Because the system is open, emissions reduction 

in agriculture is more challenging than in other sectors. In addition, there is also a risk of problem shifting: a 

reduction in emissions of one substance (e.g., ammonia) is sometimes accompanied by an increase in emissions 

of another (e.g., nitrous oxide). The nitrogen efficiency of food production is therefore of crucial importance. It is 

defined as the ratio of nitrogen in the final product (meat, milk, etc.) to the nitrogen in the input (the fertilizers or 

feed). The higher the nitrogen efficiency, the less nitrogen is lost to the environment. 

Agriculture has a small share in nitrogen oxide (NOx) emissions, but a large share in ammonia (NH3) emissions. 

The main sources of ammonia emissions are barns, manure storage, field application of manure, and manure 

processing. Ammonia is a major contributor to nitrogen deposition in nature reserves. To achieve the European 

nature goals, it is therefore important that the emission of ammonia decreases. The most important measures to 

reduce ammonia emissions are as follows: Feeding measures (supplements in feed, reducing protein content in 

feed; Animal housing (low ammonia emission stall systems and floors, air scrubbers); Manure storage (covering 

manure, acidification of manure); Manure application (manure separation, low emission manure application, 

reduced urea fertilizers, urease inhibitors). 

Within AgriDataValue, we aim to reduce mainly the ammonia emissions from cattle and pigs by the above-

mentioned measures by implementing ML algorithms to accurate predict the emission reduction. To achieve the 

goal, we plan to utilize existing measurements from existing sensors such as emission measurement, feed intake 

and analysis and manure analysis, air scrubber data, and measurements that become available in the near future, 

to build ML models that will calculate these manure emissions. 

3.4.2.2 Target Scenario and Approach 
Within AgriDataValue, we plan to study and analyze sensor data from various sources in order to predict the major 

nitrogen emission from livestock.  

Unfortunately, historical Big Data of different emission trials are not available. Thus, to achieve the goal, we plan 

to utilize few existing historical data and measurements from existing sensors such as emission measurement, 

feed intake and analysis and milk production parameters, and new measurements as they become available in the 

near future, to build ML models that will calculate the emissions. Additionally, project partners have some semi-

trained ML models that will be further trained in the course of this use case.  

3.4.1 UC 4.3: Proactive cattle/pig health/welfare monitoring 
Objective: A modern farm has already many sensors that were not initially intended to monitor health and welfare 

of the animals, such as activity sensors, neck belts, RFID tags, temperature and humidity sensors, scales, feed 

intake/concentrate intake, milk production, fat and protein content of the milk. Screening and linking these data 

can lead to predictions before clinical symptoms become detectable. 

3.4.1.1 State of play 

Animal welfare and health is getting more and more attention from livestock producers, consumers, and 

policymakers alike. Therefore, there is a tendency to continue improving the health and welfare of our livestock. 

Even though there is still disagreement on how animal welfare can be objectively measured, there are sufficient 
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sensors present on most livestock farms., Although most developed to monitor production parameters, if linked 

and processed in the right way can be used to predict and monitor animal health and welfare.  

Within AgriDataValue, we aim to enhance animal health and welfare for the targeted livestock species by 

implementing ML algorithms to identify changes in behaviour and production parameters that indicate changes 

in health and welfare. To achieve the goal, we plan to utilize existing sensor measurements from feed intake and 

production parameters, weight (gain), temperature, humidity, moving behaviour, and measurements that 

become available in the near future, to build ML models that will predict changes in production parameters and 

behaviour that can be correlated with health and welfare issues. 

3.4.1.2 Target Scenario and Approach 
Within AgriDataValue, we plan to study and analyze sensor data from various sources in order to indicate changes 

in animal health for cattle and pigs. To achieve the goal, we plan to utilize existing measurements from existing 

sensors such as emission measurement, feed intake and analysis and milk production parameters, and 

measurements that become available in the near future, to build ML models. 

Historical Big Data for this kind of work are non-existent, therefore a platform that can easily collate and integrated 

data. This would allow to better train ML models that they become more advanced to be used in practice. 

3.4.2 UC 4.4: Calving monitoring 
Objective: Calf losses are often result of dystocia (difficult calving). Losses may be reduced by sending calf birth 

alarms as the earlier help is sought the greater the survival rate of both cow and calf. 

3.4.2.1 State of play 
Good herd management is one of the major contributors to optimized reproductive performance and farm net 
return. Calving monitoring and assistance represent a weak point worldwide; although sometimes neglected, 
parturition is a crucial event for both the dam and the new-born. Prolonged or difficult calving (dystocia) and 
untimed (both late and early) assistance can compromise welfare, fertility, and milk production of the dam, 
together with survival, growth and future performance of the calf. Dystocia is a great concern in dairy cattle, with 
an incidence ranging from 10.7 to 51.2% in USA, and from 2 to 22% in Europe. In that case, the health of both the 
mother and the calf is at risk. In beef cattle, the incidence of difficult calving is usually lower and ranges from 3 to 
7.7%. Moreover, 6-10% of new-born beef calves are lost at birth and/or very soon after birth. Half of them are lost 
as a result of calving complications. Incidence of calf mortality within 48 h of life ranges from 5.3 to 13.2% in USA 
with the majority of events occurring in calves born from primiparous cows; in Australian beef pasture-based 
systems, it reaches 20% in primiparous dams.  

Animals tend to give birth at night when they feel safest. Only 50% of primiparous and 70% of older lactating cows 
are able to give birth on their own. On farms with management problems, almost every cow loses at least one calf 
in her lifetime due to delayed assistance and/or lack of human presence at birth. 

Awareness of the effects of dystocia on dam and calf welfare, survival and farm net return is growing among 
farmers and stakeholders. Improved calving monitoring and assistance are essential to timely recognition and 
resolution of dystocia and colostrum administration to new-borns. However, the identification of the exact 
beginning of parturition is challenging. The majority of farms rely on software to calculate the expected date of 
calving based on the day of the last insemination, but length of gestation varies. In systems where natural breeding 
is used or when the date of the last insemination was not recorded, the date of calving can only be presumed with 
approximation of 10 days. 

Pre-calving changes in behaviour in cattle are represented by increased restlessness, reduced feed intake and 

rumination, seeking for isolation associated with frequent postural changes, tail raising and greater frequency of 

lying bouts. Those changes in behaviour become more frequent in the last hours before calving. Visual observation 
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of periparturient animals could be carried out through video recording by cameras placed on the maternity pen, 

but this method is time-consuming and rarely used. The frequent presence of an observer could also induce 

discomfort in periparturient animals, induce the release of catecholamines and interfere with the calving process. 

With the use of precisely designed algorithms, it is possible to monitor the movements and posture of cows in real 

time before giving birth, which allows to make a decision on further action. The second phase (stage II) of the 

calving process, or the expulsion of the fetus, is the most important. It usually lasts less than one hour. This is the 

time when help should be given if necessary and the time when the calf is most likely to suffocate or develop 

respiratory acidosis, which causes prolonged wasting due to non-absorption of immunoglobulin. Research shows 

that automated sensors are much more accurate compared to visual observation. Timely calving assistance and 

initial neonatal care reduce the incidence of postpartum uterine diseases such as retention of fetal membranes, 

metritis and neonatal mortality, uterine infections, but improve the insemination outcome. Ensuring colostrum 

intake in the first 6 hours of life is essential for calf survival. Information on the exact time of calving also helps 

improve calf immunity and growth through a more successful colostrum management option [63]. 

3.4.2.2 Target Scenario and Approach 
There are already commercial solutions for calving monitoring. The animal is 
equipped with a collar that provides monitoring of the moment of calving. Based on 
changes in the behaviour of the cow, with the help of an accelerometer and 
algorithm, the received information is automatically evaluated according to the 
physiological state of the animal, and using automatic data exchange is sent to the 
attached smart device (host's computer, telephone). Animals are constantly 
monitored both in the barn and on pastures. This system is very simple to use – the 
collar needs to be put on only once in the life of the animal, and the service is 
provided for the entire life of the cow. It helps to reduce your mental load: less stress, 
more confidence in what is happening and less unnecessary manipulation of animals.  

The system analyses parameters such as the rumination time, standing time, number 
of steps, sleeping time and number of times lying down, tail lifting, as well as activity and behaviour changes to 
precisely identify the beginning of the expulsive phase, thus warning farm personnel and encouraging timely 
intervention [64]. As an example, the duration of stage II of calving has been reported to average 64.0 min for 
unassisted primiparous, 42.7 min for assisted primiparous and 20 min in multiparous cows. Methods for the 
identification of the beginning of expulsive phase are phone alerts and relative time of alarm reception could be 
used to schedule intervention in case time interval from alert and calving progression exceeds the median.  

However, manufacturers of existing calving monitoring systems are reluctant to allow external users and other 3rd 

parties to get access or modify their configuration or operation mode. In AgriDataValue approach, we plan to 

study and analyse IoT data from various sources:  

• Statistical data from the beef animal groups with and without the calving sensors; 

• Data from the National Animal Data register; 

• CSV file from the database. 

According to the National legislation and in compliance with the CAP requirements the animal data should be 

recording, and the data transferred to the National Animal Data register. At this stage the compliance with the 

different registers causes big challenges. Finally for the end users – other farms the recommendations will be 

elaboration on the parameters which should be followed for the increasing the survival rate of both cow and calf. 

3.4.2.3 Interaction Analysis 
Figure 29 provides the interaction analysis of Calving monitoring UC in a UML like Use Case Diagram approach. All 

main actors/ end-users participate at the specific UC 4.4. 

 
Figure 28: Vel'Live® Cattle 
calving detection system  
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Figure 29: Calving monitoring UC Interaction Analysis Diagram 

As can be seen, Actor 1 (Farming companies, Cooperatives and Individual Farmers) interacts both directly with the 

ADS-C and the ADS-M logical components. Actor 1 provides to ADS-C: a) Raw IoT Data (statistic data about cow, 

new-born calf, calving). Moreover, via the ADS-M may offer Historical Big Data and Semi-trained calving 

monitoring ML models, under specific incentives/ fee. The ADS platform responds with Calving Monitoring 

Advice. To facilitate research and experimentation, Actor 2 (farming and livestock research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, calving monitoring data, along with 

trained ML models. In return, Actor 2 offers more advanced or experimental ML models, for calving monitoring, 

which may be utilized by Actors 1 and 3.  

Actor 3 (Specialized service and technology providers offering added valued services based on Agri-data and 

AgriDataValue technology) access the ADS platform only via the ADS-M component. Via specific smart contracts 

may retrieve or provide any type of shared data, information or advice, including calving statistic data, historical 

shared data and trained ML models.  Actor 4 may retrieve individual calving statistics on livestock data to 

calculate the farmer CAP national/ regional supporting funding. Finally, both Actor 4 and Actor 5 (EU stakeholders/ 

policy) retrieve regional statistics in order to evaluate the fulfilment level of specific CAP policies/strategies. 

3.5 Use Case Cluster 5: Cross Sector 

The UC Cluster 5 is focused on Cross Sectors’ applications and aims to underline AgriDataValue focusing on a 

business-oriented dimension.  

Objectives: In detail, the objective of UC Cluster 5 are to:  

• Validate cross domain use cases (fruit, vineyards, livestock, milk, oil, biogas, manure, energy)  

• Address both supply and demand sides of the supply chain, including interoperability and traceability of 

platforms, electricity production and waste management. 

Though all Use Cases have been selected to create significant impact in the agriculture domain, AgriData Space 
will also experiment with a unique case of combining multiple pilots in a single circular economy case (UC5.1), 
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along with meat/milk traceability (UC5.3/UC5.4). It will be realized by TBA, member of Agrinio Union, one of the 
largest agricultural cooperatives in Greece with more than 20.000 members [65]. The approach to realize the UC 
cluster 5 objectives is to combine historical, (real-time) and Big Data processing technologies such as IoT sensors, 
edge cloud, drones/satellite visual/multispectral images and AI models and train ML-based applications to provide 
advice on improved cross sector, added valued services. 

3.5.1 UC 5.1: Fully Circular ecosystem 
Objective: Experiment and model the correlation of IoT data, ranging from forage crop production, cattle feed, 

welfare and manure handling, biogas generation, electricity production and utilization of solid and liquid waste in 

biological fertilization and irrigation of crops (including forage). 

3.5.1.1 State of play 
It is well known that fertilizers represent an important cost of the crops, while the cost of the feeding the animals 

is the most important cost of the livestock farmers, which is constantly increasing. Depending on the mix of organic 

animal by-products/wastewater and agricultural residues and silages in an area (e.g., cattle farms, other livestock 

units), the mineral content of the digestate may be more suitable for agricultural use. This has the consequence 

of reducing the need for chemical fertilizers and thus saving farmers money.  

Manure is the most abundant source of organic material within the animal sector, which is correlated with the 

animal type. About 23 kg of cattle manure are produced per animal per day [66], which has 3% nitrogen, 2% 

phosphorus, and 1% potassium (3-2-1 NPK), making it the right type of fertilizer for almost all types of plants and 

crops. That’s because it brings back nutrient balance to fields organically. Despite the Circular Economy 

Regulations, which not allow untreated animal manure incineration, in many cases, manure is used on farms 

without proper treatments, releasing carbon dioxide (CO2), methane (CH4), and ammonia (NH3) contributing to 

GHGs emissions, while sometimes, it can contain dangerous pathogens and bacteria, such as EColi [67]. So, an 

aging or decomposition process is necessary to break down the organic matter and eliminate the harmful 

substances before the manure.  

Cow and pig manure contains a high amount of carbohydrates and proteins respectively with a theoretical amount 

of 469 and 516 Liquid CH4 (LCH4)/kg VS [68]. Recent studies from the Danish Institute of Agricultural Sciences 

propose that the application of treated waste as a soil conditioner to one hectare of grasses ensures savings of at 

least 34 kg of nitrogenous fertilizer. Beyond environmental and soil protection, this may result in a farmer profit 

of €20, thus a reduced production cost of up to 40%. A small biogas unit produces an amount of liquid or solid 

organic fertilizer (as a free by-product), enough to cover the organic fertilization of 5,000 – 10,000 acres, which 

can be given free to farmers.  

3.5.1.2 Target Scenario and Approach 
UC5.1 is based on combination of use cases and pilots and will be mainly realized by TBA, an AgriDataValue 

beneficiary and member of the Agrinio Union cooperative [65]. As it is shown in in Figure 30, we consider a fully 

circular economy example. We may start from cattle which are mainly fed for their meat, without underestimated 

milk. Various farm and animal wearable sensors will be used to monitor animals’ welfare, activity, feed, calving 

and emissions, and are part of UC cluster 4. Meat traceability and Milk/Dairy traceability are considered in UC5.2 

and UC5.3 respectively.  

In this UC example, manure, dairy factory waste and crop waste (including local olive mill waste) will be used to 
feed two anaerobic digesters already available by TBA to produce biogas. Biogas will be consumed by an 5MW 
electricity generator, which provides electricity to the grid. The anaerobic residual digesters waste material left 
after the digestion process is called “Digestate” and it is composed of liquid and solid portions. These are often 
separated and handled independently, as each have value that can be realized with varying degrees of post 
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processing. Within AgriDataValue digestate will be utilized as organic fertilizers in the form of compost (solid 
waste) and irrigation water (liquid waste).  

  
Figure 30: Circular Economy and Meat/Milk traceability Pilot 

As it is shown in Figure 30, IoT sensors, geotagged cameras and satellite multispectral data supported by edge 

cloud processing will be utilized to improve the forage crop production and inspect climate change. We plan to 

study and analyze IoT data and images from various sources to calculate the economic profit of the circular 

economy experiment and the impact in the climate, along with GHG reduction. We plan to calculate the average 

manure produced per animal, based on species, feed mixture and age, using various farm (e.g., Synelixis SynAir 

product) and wearable sensors which will be used to monitor animals’ welfare, activity, feed, calving and 

emissions. The produces manure will be injected to the anaerobic digesters and the biogas generated will be 

calculated. As a next step, we will measure the produced liquid and solid waste (compost), along with their 

influence in forage production. It is known that the soils in Greece, after the reckless use of chemical fertilizers for 

several years, have a serious fertilization problem. Finally produced forage will be feed to cattle.  

3.5.1.3 Interaction Analysis 
Figure 31 provides the interaction analysis of Circular Economy UC in a UML like Use Case Diagram approach. All 

main actors participate at the specific UC. As can be seen, Actor 1 interacts with AgriDataValue system and 

provides: a) raw IoT Data, such as local micro-clima data (air temperature and humidity, rain volume and 

precipitation data, wind direction and volume), soil moisture and temperature, leaf wetness, air quality data, 

manure and animal waste produced, animal welfare, activity, feed, calving data, generated Biogas/Energy, 

liquid/solid digestate and b) Feedback on volume and quality of generated secondary (sub-)products. Moreover, 

via the ADS-M may offer historical Big Data and semi-trained circular economy ML models, under specific 

incentives/ fee. To facilitate research and experimentation, Actor 2 is allowed to interact directly with the ADS-C 

and receive any type of historical data, weather data and satellite data, along with trained ML models. In return, 

Actor 2 offers more advanced or experimental ML models along with financial analysis and investment advice of 

circular economy establishments sustainability, which may be utilized by Actors 1 and 3. Actor 3 may retrieve or 

provide any type of shared data, information or advice, including historical shared data, satellite’s data, statistics 

and financial analysis and investment advice of circular economy establishments sustainability.  
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Figure 31: Circular Economy Interaction Analysis Diagram 

Actor 4 may retrieve individual statistics on biogas/energy and liquid/solid digestate produced, to calculate the 

reduction in chemical fertilizers applications and in clean water consumption for irrigation, which may be used 

when calculating the CAP national/ regional supporting funding. Finally, both Actor 4 and Actor 5 retrieve regional 

statistics to evaluate the fulfilment level of specific CAP policies/strategies, including soil strategy objectives.  

3.5.2 UC 5.2: Supply Chain transparency for Winemaking 
Objective: Experiment and model both on-farm and post-farm activities, from technical and business perspectives 

related to orchards/vineyards harvesting, fruit processing/wine production and supply chain traceability, including 

data business models. 

3.5.2.1 Target Scenario and Approach 

Many stakeholders in the wine/vineyards supply chain already have some sort of data gathering system in place. 

In some cases, there are even silos of data stored in private databases. Within UC5.2, we plan to research by 

corelating grapes and wine production data in AgriDataValue platform blockchain facility. However, the objective 

is to trace up to the wine fermentation/ageing at cellars rather than all the way to the consumers table. 

 
Figure 32: Winemaking Traceability Scenario 

As can be seen in Figure 32, the scenario starts from the vineyards, where grapes are growing and gathers data 

related to weather and micro-clima, satellite/drones, soil and leaf, along with crop production calendar, including 

any type and volume of irrigation/water consumption, application of any type of fertilizers or pesticides spraying 
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(if any), or any other farming activity (e.g. anti-frost actions). Additional data related with the crop growth history 

are added, farmer feedback along with AgriDataValue system advise on best practices up to crop harvesting. The 

timing of the harvest is crucial as it affects the sugar, acid, and flavour levels in the grapes. 

As the harvested grapes are transported to the winery additional information on conditions (e.g. temperature, 

light, humidity), transportation duration and cost may be collected. At the winery, harvested grapes are crushed 

to release the juice and may also undergo destemming, which removes the stems from the grape clusters. The 

crushed grapes, along with their skins, seeds, and juice are placed into fermentation vessels, typically stainless-

steel tanks or oak barrels. Yeast is added to the mixture to convert the sugars in the grapes into alcohol through 

the process of fermentation. This can take anywhere from a few days to several weeks, depending on the desired 

style of wine. After fermentation, the mixture is pressed to separate the solids (grape skins, seeds, etc.) from the 

liquid (wine). The liquid is transferred to a different container, while the solids are usually discarded or used for 

other purposes such as making grape pomace oil or for distillation. Whatever remains may be provided as waste 

to circular economy UC. The wine is often aged, from a few months to several years, depending on the type of 

wine being produced, in oak barrels or stainless-steel tanks to develop complexity and enhance flavours. To 

remove any remaining solids or impurities, the wine may undergo a process of clarification and filtration. Finally, 

once the winemaker is satisfied with the wine's flavour and quality, it is ready for bottling. Aging in bottle at 

winery's cellar allows the wine to further develop and evolve over time. 

Nevertheless, as a full traceability use case from farm to fork for grapes/wine supply chain is beyond the 

AgriDataValue scope, we concentrate on the farm to winery steps, which may be latter extended to cover the 

complete supply chain.  

3.5.2.2 Interaction Analysis 
Figure 33 provides the interaction analysis of the Grapes/Wine supply chain traceability UC in a UML like Use Case 

Diagram approach.  

  
Figure 33: Grapes/Wine supply chain traceability Interaction Analysis Diagram 

The UC can be considered in relation to other UCs such as reduction of irrigation, fertilizers or spraying. Though 

all main actors could participate at the specific UC, we focus on the Actors 1, 3, 4 and 5. As can be seen, Actor 1 

interacts with AgriDataValue system and provides: a) raw IoT related Data (micro-clima, air-data, Leaf and Soil 

data), b) Production calendar data (i.e., dates and volume of irrigation, spraying, fertilization) and c) Feedback on 

production to receive advice on best practices. Moreover, via the ADS-M, Actοr 1 may offer historical Big Data 

and semi-trained grapes production ML models, under specific incentives/ fee. Actor 3 may retrieve or provide 
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any type of shared data, information or advice, including grapes/wine transportation data, statistics and financial 

analysis. Actor 4 may retrieve individual statistics on grapes/wine data to calculate the farmer CAP national/ 

regional supporting funding. Finally, both Actor 4 and Actor 5 retrieve regional statistics to evaluate the fulfilment 

level of specific CAP policies/strategies, including soil strategy objectives. 

3.5.3 UC 5.3: Supply Chain transparency for Meat traceability 
Objective: Experiment and model both on-farm and post-farm activities, related to cattle/pig meat production, 

by interoperable farm, slaughterhouse, and supply chain traceability. 

3.5.3.1 State of play 
Meat traceability is a concept which is becoming increasingly discussed and have recently emerged on most 

consumers' radars. Traceability in meat production is the ability to trace an individual cut of meat from field to 

fork. This means that any beef, lamb, pig or animal produce that ends up on customers’ plate, can be tracked all 

the way back to the farm and the animal, which it came from. By following traceability processes at each stage of 

a supply line, it is possible to achieve full meat traceability. Similarly in case of milk/dairy traceability, any 

bottle/carton of milk, piece of cheese, yogurt or dairy in general should be able to be tracked all the way back to 

the farm and the animal, which it came from. This also includes the animal related information and the way it has 

been fed.  

Agri-food traceability is part of the EU regulation 2017/625, on “enforcing EU rules for the agri-food chain” [69]. 

The regulation establishes common rules for EU official controls to ensure that agri-food chain legislation for the 

protection of human health, animal health and welfare, and plant health, is correctly applied and enforced and 

introduces a better harmonised and coherent approach to official controls and enforcement measures along the 

agri-food chain and strengthens the principle of risk-based controls. To ensure that the Union agri-food chain 

legislation is correctly enforced, the competent authorities should have the power to perform official controls at 

all stages of production, processing and distribution of animals and goods concerned by that legislation. Moreover, 

to ensure that official controls are thoroughly conducted and effective, the competent authorities should also 

have the power to perform official controls at all stages of production and distribution of goods, substances, 

materials or objects which are not governed by Union agri-food chain legislation insofar as it is necessary to fully 

investigate possible infringements of that legislation and to identify the cause of any such infringement.  

For transparency reasons, the national authorities must publish annual reports on traceability, along with rules 

for calculating fees to ensure that EU countries properly finance their control system and that the fees do not 

exceed the cost of performing official controls [70]. 

3.5.3.2 Target Scenario and Approach 
Many stakeholders in the meat supply chain already have some sort of data gathering system in place. However, 

currently most of the data gathered is mainly being used for food safety purposes. In some cases, there are even 

silos of data stored in private blockchain to offer cattle traceability. The potential of structured large-scale data 

collection for the improvement of resource efficiency, animal welfare and product transparency in the beef supply 

chain is still largely unexplored. Within UC5.3, we plan to research by corelating animal production, feed and 

traceability from the stable to the local slaughterhouse, including animal feeding, wellbeing and growth data in 

AgriDataValue platform blockchain facility.  



HORIZON Research and Innovation Actions - 101086461: AgriDataValue 

Deliverable D1.1: Definition & analysis of use cases and system requirements V1 

Page 65 of 224 

 
Figure 34: Meat Traceability Scenario 

As can be seen in Figure 34, the scenario starts from the initial animal record/genealogical tree including the 

animal breed, parents, sex, age etc. Additional data related with the animal growth history are added, including 

the feeding history, weight, growth location, health record along with any medication or feed supplements. 

Finally, animal habits, movement, wellbeing and (outdoor/indoor) living conditions are added.  

As the animal is transported to the slaughterhouse additional data related to transportation duration, location, 

conditions along with truck emissions, fuel and cost are added. At the slaughterhouse, additional information 

related with the animal health and process is added. The next step includes meat supply chain, transportation to 

the store or processing at meat factory and intermediate storage.  

Nevertheless, as a full traceability use case from farm to fork for meat supply chain is beyond the AgriDataValue 

scope, we concentrate on the farm to slaughterhouse steps, which may be latter extended to cover the complete 

supply chain. 

3.5.3.3 Interaction Analysis 
Figure 35 provides the interaction analysis of the Meat supply chain traceability UC in a UML like Use Case Diagram 

approach. Though all main actors could participate at the specific UC, we focus on the Actors 1, 3, 4 and 5.  

 
Figure 35: Circular Economy Interaction Analysis Diagram 

As can be seen, Actor 1 interacts with AgriDataValue system and provides: a) raw Animal related Data (animal 

breed, genealogical tree/parents, Sex, Age), b) Growth History (all feeding information, animal weight record, 
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health record, growth locations etc), c) Activity/Wellbeing of the animal, including Outdoor/Stable conditions 

(Air Quality/Temperature/Emissions). Moreover, via the ADS-M, Actοr 1 may offer historical Big Data and semi-

trained irrigation ML models, under specific incentives/ fee. Actor 3 may retrieve or provide any type of shared 

data, information or advice, including animal/meat transportation data, statistics, financial analysis and 

investment advice of livestock production. Actor 4 may retrieve individual statistics on livestock data to calculate 

the farmer CAP national/ regional supporting funding. Finally, both Actor 4 and Actor 5 retrieve regional statistics 

to evaluate the fulfilment level of specific CAP policies/strategies.  

3.5.4 UC5.4: Increase farmers’ digital independence 
Objective: Increasing farmers' digital independence in precision farming and IoT applications 

3.5.4.1 State of play 
Precision farming techniques can potentially 

optimize or even reduce the required inputs such 

as fertilisation, irrigation, crop protection and 

labour. Precision agriculture can potentially be a 

mechanism to meet food production needs while 

reducing environmental impacts [71]. Variable rate 

technologies can match the actual need for 

fertilizer or crop protection in that specific place of 

the field. These variable rate task maps are often 

based on scans, drone- or satellite imagery. IoT 

technology has transformed agriculture with 

providing farmers real time data (Figure 36).  

By using these newest digital technologies farmers 

could produce higher yields, reduce waste and 

practice more sustainable. It could improve their 

decision-making, increase their profits, improve 

working conditions by automatization and increase 

transparency. But despite all these potential 

advantages, there is still some reluctance to use 

these technologies, especially in smaller farms. 

Some reasons for this reluctance include 

connectivity issues, unawareness of the benefits, incompatibility between platforms, lack of digital skills, high 

initial investment cost and privacy concerns. Farmers prefer easy-to-use technologies such as automatic steering, 

section control and forecast apps and tend to stay at their current technology level [72, 73]. 

Challenges in adopting Big Data are often characterized by the 4 Vs: Volume, velocity, variety and veracity. To 

solve problems, large volumes of data are needed, these large volumes can be overwhelming for the farmer. 

Farmers need the decision making to be fast. When they receive data of their field, they want to handle on it 

quickly, this is implied by the second V: velocity. The data that is gathered on the farm consists of a large variety 

of data types and they often need to be processed together. Farmers need to be certain of the veracity of this 

data for it to be considered in their decision making. Faulty data could have an impact on their quality and yield 

[74].  

 

Figure 36: Data management in smart farming [85] 
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3.5.4.2 Target Scenario and Approach 
In this use case we will host a learning network of farmers. This network will allow collaboration between the 

farmers and interchanging of knowledge and experience. The network will be guided by agronomists who can aid 

when digital skills of the farmers are insufficient and provide training to further the farmers digital independence.  

The farmers are allowed to pick a precision agriculture topic of their choice, ensuring the practical relevance of 

the topic. Providing support will stimulate the farmers to test new technologies and farm management strategies. 

These new strategies can optimize or reduce fertilisation and pesticide usage.  

These use cases can highlight issues and barriers with using precision farming techniques. These issues can be 

brought to the attention of the technology providers. With permission of the host farmers, the successful cases 

could serve as an example to other farmers and improve precision farming adoption levels.  

3.5.4.3 Interaction Analysis 
Figure 37 provides the interaction analysis of UC 2.5 in a UML like Use Case Diagram approach.  

 
Figure 37: UC 2.5 Interaction Analysis  

As can be seen, Actor 1 (Farming companies, Cooperatives and Individual Farmers) interacts both directly with the 

ADS-C and the ADS-M logical components. Actor 1 provides to ADS-C: a) raw IoT Data, such as local micro-climate 

data (rain volume and Precipitation data, wind direction and volume, air temperature and humidity), soil moisture 

and temperature, along with a schedule of their relevant field activities and b) crop stage feedback, informing the 

system on the crop growth stage and feedback on the advice. Moreover, via the ADS-M may offer historical Big 

Data and semi-trained ML models, under specific incentives/ fee. The ADS platform responds with Advice 

concerning a specific activity such as fertilisation. 

To facilitate research and experimentation, Actor 2 (farming and climate monitoring research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, weather data and drones/satellite 

data, along with trained ML models. In return, Actor 2 offers more advanced or experimental ML models, which 

may be utilized by Actors 1 and 3.  

Actor 3 (Specialized service and technology providers offering added valued services based on Agri-data and 

AgriDataValue technology) access the ADS platform only via the ADS-M component. Via specific smart contracts 
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may retrieve or provide any type of shared data, information or advice, including historical shared data, drones’ 

and satellite’s data, advice and ML trained models. They can also receive feedback from the farmers on the 

current barriers and issues, so that they may improve their products.  

Actor 4 (CAP paying authorities) directly via the ADS-C module imposes to the platform specific policies (such as 

eco-schemes) and retrieves individual statistics to be used when calculating the CAP national/ regional supporting 

funding. Finally, persona from both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve regional statistics to 

evaluate the fulfilment level of specific CAP policies/strategies, including soil strategy objectives. The policy 

makers can also receive the current barriers and issues so they can take these into consideration when making 

new policy decisions. This information is very sensitive and will/can only be shared if agreed to by the farmer. 

3.6 Use Cases Cluster 6: CAP realization  

The UC Cluster 6 is focused on CAP realization tools/applications and aims to underline AgriDataValue focusing on 

a CAP monitoring tools.  

Objectives: In detail, the objective of UC Cluster 6 are to:  

• Assess and manage the risk through modern ML, aiming to reduce the use of pesticides, fertilisers, and 

antibiotics. 

• Bring forward modern crop monitoring technologies (e.g. automatic pixel classification of satellite images, 

automatic processing of data received from in-situ sensors)  

• Benchmark eco-scheme monitoring tools to support the new CAP towards fair income, land use protection 

and environmental care. 

3.6.1 UC 6.1 Economic risk assessment  
Objective: Assessing and managing the risk through modern machine learning (ML), that help farmers to adopt 
“external” recommendations in collaborative production and predicting the yield quality. In parallel, the National 
contribution to EU objectives are to reduce the use and risk of pesticides, fertiliser and antibiotics. 

3.6.1.1 State of play 
By the year 2050, planet Earth will be the home to more than 10 billion people, and we need to increase 
agricultural production for as much as 65% to feed all inhabitants. Today, we are already cultivating almost every 
piece of land we can, consuming more than 70% of drinking water for crops’ irrigation (and more than 60% of 
this water is wasted due to overirrigation) [1] and use more than 220.000 tonnes of synthetic fertilisers and 
pesticides annually only in Europe, further aquifer contamination via deep infiltration, while jeopardising our 
fragile eco-system and causing climate change. Beyond water waste, overirrigation increases the potential of crop 
yield loses from fungal and bacterial foliar, disturbs the oxygen balance of the root zone, reduces plant water 
uptake, causes a decrease in soil temperature, thus reduces root growth, increases energy use for pumping, causes 
leaching of nitrogen and other micronutrients, roots rotting diseases. Similarly, livestock plays a significant role in 
balancing climate ecosystem. In Europe (EU27), the agricultural sector is responsible for 11% of total greenhouse 
gas emissions [2], while an excessive concentration of greenhouse gases, such as carbon dioxide (CO2), methane 
(CH4) and nitrous oxide (N2O) from livestock enteric fermentation, raises the average annual temperature, 
contributing to the global warming. In parallel, according to FAO climate change is emerging as a major challenge 
to agriculture and biodiversity. 

The last couple of years, modern farms are creating a huge amount of data. Smart terrestrial sensors on the fields 

measure the micro-climate, the air humidity and temperature, the rain volume, the irrigation water usage and 

examine the soil conditions and pest developments; GPS-guided tractors and farming machines, flying drones and 

satellites with multi-spectral cameras produce data about the exact field irrigation, fertilising and pesticides needs; 
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wearable sensors provide valuable information for livestock health, growth and wellbeing. By applying Big Data 

and Artificial Intelligence (AI) technologies on combinations of diverse agricultural data, we can provide 

significantly knowledge, ultimately support farmers in their decision-making processes, help them run their 

businesses more efficient and have the potential to enable sustainable innovation and growth. 

The European Green Deal, introduced in 2019 by the EC (EC, 2019), sets ambitious targets for the European food 

and agricultural system for 2030, several being quantitative with a reduction in the use of pesticide, fertiliser, and 

antibiotics by 50%, 20%, and 50%, respectively. Additionally, a quantitative target has been set to increase 

agricultural areas under organic farming (25%), agricultural areas under high-diversity landscape features (10%), 

and protected areas. 

The EU Biodiversity Strategy for 2030, as part of the European Green Deal, specifically aims at protecting nature 

and reversing the degradation of ecosystems, addressing the impacts of climate change, forest fires, food 

insecurity and disease outbreaks.   

CAP Strategic Plans contribute to the objectives of reducing greenhouse gas emissions and increasing carbon 

sequestration, by protecting and increasing carbon sinks, and addressing emissions from mineral fertilisers and 

livestock. For the first time, CAP basic standards (conditionality) protect EU agricultural wetlands and peatlands 

to reduce carbon release. Climate mitigation efforts are stepped up thanks to e.g., restricted tillage, a ban on 

conversion, drainage, burning or extraction of peat. To remove more carbon, farmers need to further change 

production methods. The Plans will incentivise land managers to store carbon in soil and biomass and reduce 

emissions on 35% of the EU’s agricultural area through appropriate management practices, such as extensive 

grassland management, growing of leguminous and catch-crops, organic fertilisation, or agroforestry. 

Farmers protect soils and preserve soil potential thanks to crop rotation. All Strategic Plans include this as a new 

basic condition for farmers instead of new GAEC obligation and the rotation will take place on around 85% of the 

arable land supported by the CAP. Crop rotations will also help disrupt pest and disease cycles and thus reduce 

use of pesticides. In addition, the CAP Strategic Plans will help farmers restore soil fertility, reaching up to 47% of 

EU agricultural land such as through enhanced crop rotation, conservation agriculture, catch crops or vegetation 

cover in orchards. This also helps increase the water retention capacity and resilience to drought. 

Targeting water resilience, specifically, the Plans include support for action on cultivating drought-adapted crops, 

establishing or restoring landscape features like ponds and hedges, stimulating agroforestry, improving irrigation 

equipment and infrastructure. 

To reduce pollution from fertilisers and pesticides, all farmers receiving support must create buffer strips along 

water courses of at least 3 metres, sometimes with special provisions for small fields surrounded by water. The 

Strategic Plans provide for support that aims at reducing emissions during different stages of the nutrient cycle, 

from feeding and animal housing, to manure storage and application of ammonia.  To reduce the use and risk of 

pesticides, more than 26% of EU agricultural land will receive support e.g., by banning use in certain specific areas, 

adopting integrated pest management, and using non–chemical methods for pest control such as precision 

farming. Reduction of pesticide and fertiliser use will also be achieved also through increasing the area of organic 

production. The size of the area that receives specific CAP support for organic production in 2027 will almost 

double, reaching close to 10%, compared to the area funded in 2020 (5.6%). This will significantly help Member 

States’ reach their national ambitions for increase in organic areas. The ambitions for those areas across Member 

States range from 5 to 30% in 2030. 

https://link.springer.com/article/10.1007/s41130-023-00191-9#ref-CR7
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3.6.1.2 Target Scenario and Approach 
Transformative changes such as the ones required within the Green Deal and the new CAP may have a significant 

environmental and economic performance of the agricultural sector. Though the irrigation water pricing does not 

follow a consistent pattern between member states and the overall level of prices is relatively low, the climate 

change, especially in countries such as Spain and Greece with large, irrigated areas, is expected to change the 

irrigation pricing model in the near future. Moreover, irrigation cost is significantly increased by the energy cost 

of pumping, especially in case of greater depth, while overirrigation increases the potential of crop yield loses 

from fungal and bacterial foliar, disturbs the oxygen balance of the root zone, reduces plant water uptake, causes 

a decrease in soil temperature, thus reduces root growth, causes leaching of nitrogen and other micronutrients, 

roots rotting diseases. Similarly, pesticides usage, only when and if it is really needed, does not only protect the 

environment and our lives, but has a significant impact in the farmers. In case of livestock, animals’ health/welfare, 

feeding, activity and calving status, play a significant role in climate ecosystem, while affecting economic 

performance of the farmer.  

AgriDataValue will strengthen the capacities for smart farming, and thus enhance the environmental and 

economic performance of the agricultural sector via knowledge. By upscaling (real-time) data from IoT sensors, 

drones, and agricultural robots (KER-1, KER-5, KER-7) with interoperable, already available dataset and satellite 

EO data, along with Big Data and Artificial Intelligence (AI) technologies, AgriDataValue will enable to enter the 

Smart Farming 4.0 era and enable sustainable food systems and traceability from farm to fork (KER-8). 

3.6.1.3 Interaction Analysis 
As can be seen, Actor 1 (Farming companies, Cooperatives and Individual Farmers) interacts both directly with the 

ADS-C and the ADS-M logical components. Actor 1 provides to ADS-C: a) raw IoT Data, such as local micro-clima 

data (rain volume and Precipitation data, wind direction and volume, air temperature and humidity), soil moisture 

and temperature, along with volume and schedule of the consumed irrigation water, pesticides/fertilization and 

b) irrigation/ pesticides / fertilization stage feedback, informing the system on irrigation/pesticides/ fertilization 

feedback on advice. Moreover, via the ADS-M may offer historical Big Data and semi-trained economic risk 

assessment ML models, under specific incentives/ fee. The ADS platform responds with irrigation/ pesticides / 

fertilization advice and if available may offer automatic irrigation/ pesticides / fertilization control.  

 
Figure 38: UC 6.1 Interaction Analysis  
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To facilitate research and experimentation, Actor 2 (farming and climate monitoring research institutes) is allowed 

to interact directly with the ADS-C and receive any type of historical data, weather data and drones/satellite 

data, along with trained ML models. In return, Actor 2 offers more advanced or experimental ML models, which 

may be utilized by Actors 1 and 3.  

Actor 3 (Specialized service and technology providers offering added valued services based on Agri-data and 

AgriDataValue technology) access the ADS platform only via the ADS-M component. Via specific smart contracts 

may retrieve or provide any type of shared data, information or advice, including historical shared data, drones’ 

and satellite’s data, irrigation advice and ML trained models.  

Actor 4 (CAP paying authorities) directly via the ADS-C module imposes to the platform specific economic risk 

assessment policies and retrieves individual economic risk assessment policies to be used when calculating the 

CAP national/ regional supporting funding. Finally, persona from both Actor 4 and Actor 5 (EU stakeholders/ 

policy) retrieve regional economic risk assessment policies to evaluate the fulfilment level of specific CAP 

policies/strategies.  

3.6.2  UC6.2 Real-time input for pilot (satellite images, data sensors, weather forecast)  
Objective: The main objective of UC6.2 is to bring forward modern crop monitoring technologies, such as: 

automatic pixel classification of satellite images, automatic processing of data received from in-situ sensors, 

weather forecast, in order to help the farmers to make faster and more efficient decisions in the distribution of 

inputs and treatments on their crops. 

3.6.2.1 State of play 
The last couple of years, modern farms are creating a huge amount of data which could be used for training ML 

models and make decisions based on AI algorithms. However, one of the most important hinders is the agricultural 

data availability and heterogeneity. Sensors’ data generated locally is often more precise and valuable, in 

comparison to global, EU-wide, national, or regional datasets. On the other hand, the combination of local data 

with datasets from a broader area, allows for comparison of crop and stock raising conditions, automated 

identification of crop or stock diseases or production delays, well before it could be observed in the area of 

interest, while it offers significant support for informed decisions related to agricultural production adaptation to 

climate change or for market analyses. Moreover, the utilization of AI models for combining and upscaling 

heterogeneous agricultural data, for example local weather or soil measurements with drones’ or satellites’ 

multispectral vegetation indices, such as Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 

Index (EVI), Green Normalized Difference Vegetation Index (GNDVI) and Chlorophyll Vegetation Index (CVI), could 

generate more accurate knowledge, covering larger areas with reasonable overall cost. 

3.6.2.2 Target Scenario and Approach 
AgriDataValue aims to establish itself as the “Game Changer” in Smart Farming digital transformation and agri-

environmental monitoring, and strengthen the smart-farming capacities, competitiveness, and fair income by 

introducing an innovative, open source, intelligent and multi-technology, fully distributed Agri-Environment Data 

Space (ADS). To achieve technological maturity, fast and massive acceptance, AgriDataValue adopts and adapts a 

multidimensional approach that combines state of the art Big Data and data-spaces’ technologies (BDVA/ IDSA/ 

GAIA-X) with agricultural knowledge, monetization, new business models and agri-environment policies, leverages 

on existing platforms, edge computing and network/ services, and introduces novel concepts, methods, tools, 

pilot facilities and engagement campaigns to go beyond today’s state of the art, perform breakthrough research 

and create sustainable innovation in upscaling (real-time) agricultural sensor data, already evident within the 

project lifetime. 
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Many farmers already collect data from the sensors installed on their lands. Within UC6.2, we plan to correlate all 

the data in order to optimize of inputs, water and energy resources for the crops. For this reason, the data it 

manages cover the following aspects: 

- Geospatial data: location, Geographical Information System (GIS) and GPS 
- Satellite imagery: Sentinel 2, Proba-V (RGB, NDVI) 
- Climate data: Historical meteorological data and forecast 
- Agrometeorological data: air temperature, air humidity, wind speed, wind direction, the amount of 

precipitation, soil temperature, soil humidity 
- In situ data: Farm crop - phenological phase, plant height, degree of plant development 

For a selected field and period, UC6.2 will provide a diagnosis field and view processed data with plant stress 

detection derivate information. UC6.2 will display the results in map containing the NDVI images under the crop 

fields and the output table containing processed data from the NDVI image, crop parameters and resulted 

meteorological data. The users can identify based on the results the crop situation and recommendations for each 

selected field. The result will also provide Pie Charts that display the level of soil moisture % (Drought and Flood) 

and additional bar chart Graphs will contain Scorching Heat Intensity or Winter Harshness (mutual exclusive). 

3.6.2.3 Interaction Analysis 

 
Figure 39: UC 6.2 Interaction Analysis  

Actor 1 (Farmers) interacts with AgriDataValue system and provides: 

- Geospatial data location, Geographical Information System (GIS)  
- Climate data 
- Agrometeorological data: air temperature, air humidity, wind speed, wind direction, the amount of 

precipitation, soil temperature, soil humidity 
- In situ data: Farm crop - phenological phase, plant height, degree of plant development 

Actor 2 (farming and climate monitoring research institutes) receives any type of historical, weather and 
drones/satellite data, along with trained ML models. In return, Actor 2 offers more advanced or experimental ML 
models, which may be utilized by Actors 1 and 3.  
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Actor 3 provide any type of shared data, including satellite imagery, historical meteorological data and weather 
forecast. Actor 4 processes all the data through ADS and provides on the results the crop information and 
recommendations for each selected field, like: level of soil moisture % (Drought and Flood). More information to 
farmers (correlated data: weather, soil properties and hybrid maturities, geo-location, etc.) will facilitate faster 
and more accurate decisions. Also, statistical reports can be obtained regarding the variation of climatic 
parameters and soil fertility over a period, for a certain plot. The statistical reports are important to evaluate the 
fulfilment level of specific CAP policies/strategies. Both Actor 4 and Actor 5 (EU stakeholders/ policy) retrieve 
regional statistics to evaluate the fulfilment level of specific CAP policies/strategies, including soil strategy 
objectives.  

3.6.3 UC 6.3 Benchmarking and Eco-scheme monitoring tools for new CAP  
Objective: Eco-scheme monitoring tools to support the new CAP towards fair income, land use protection and 

environmental care 

3.6.3.1 State of play 
Through the support granted through Pillar I of the CAP, the aim is to revitalize the animal breeding sector and 

stimulate the users of agricultural areas to practice sustainable agriculture by exploiting the areas through grazing. 

Through the Ecoschemes in Pillar I, farmers are stimulated to adopt agricultural practices beneficial for the climate 

and the environment, respectively: improving the quality and protecting the soil through the rotation and 

diversification of crops, including leguminous crops, the sustainable management of nutrients, the contribution 

to the protection of biodiversity, the maintenance and adoption of extensive agricultural practices, non-

productive investments to ensure anti-erosion protection of the soil, efficient management of natural resources, 

protection of water resources against pollution and increased biodiversity. At the same time, the major focus on 

increasing the degree of resilience of holdings will reduce the negative impact of climate factors, through the 

integrated approach of some risk management tools financed from both pillars of the CAP. 

By means of the implementation of ecoschemes, a better protection is desired and maintaining the potential of 

soils (avoiding desertification phenomena), but also increasing biodiversity, decreasing carbon dioxide emissions, 

increasing the areas occupied by protein crops in order to increase the nutritional quality of the soil, increasing 

soil fertility and humus content. At the same time, the aim is to maintain water quality as a result of compliance 

with the Water Framework Directive no. 91/676/EEC, maintaining the quality of meadows, increasing the diversity 

of agricultural crops but also maintaining the vitality of villages and sustainable agriculture practiced at the level 

of small traditional households. The following eco-schemes contribute to the environmental objective of climate 

change adaptation and mitigation, including by storing carbon in the soil and reducing greenhouse gas emissions: 

• ECOSCHEMA: Environmentally beneficial practices applicable in arable land,  

• ECOSCHEMA: Practicing environmentally friendly agriculture in small farms, respectively traditional 

households.  

Through the requirements of these two ecoschemes, farmers will make their contribution to increasing the carbon 

storage capacity in the soil, reducing soil erosion by reducing the impact of agrotechnical works and increasing 

natural fertilization by planting proteinaceous crops. Eco-schemes also contribute to the improvement of soil and 

air quality by reducing the consumption of chemical substances in fertilization.  

Also, through the application of ecoschemes:  

• ECOSCHEMA: Environmentally beneficial practices applicable in arable land,  

• ECOSCHEMA: Practicing environmentally friendly agriculture in small farms, respectively traditional 

households  

• ECOSCHEMA - Learning the interval between rows in orchards, vineyards, nurseries and orchards,  
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• ECOSCHEMA -reducing the use of pesticides,  

the contribution of farmers to the achievement of the environmental objective regarding the promotion of 

sustainable development and the efficient management of natural resources (water, soil and air) is ensured, 

including by reducing dependence on chemical substances. The application of the requirements set out in the 4 

ecoschemes will lead to the improvement of soil quality and the reduction of erosion by protecting the soil and 

covering it for a prolonged period, diversifying crops and establishing proteinaceous crops. Also, the practices 

promoted in the ecoscheme contribute to increasing the nitrogen content in the soil, increasing the soil's carbon 

sequestration capacity and improving the biocenosis and soil structure, the main natural resource in agricultural 

activity. In order to stop and reverse the decline of biodiversity, improve ecosystem services and preserve habitats 

and landscapes, the requirements for ECOSCHEMA - Environmentally beneficial practices applicable in arable land 

and ECOSCHEMA - The spacing between rows in orchards, vineyards, nurseries and orchards that have a high 

degree of crop diversification, keeping a percentage of the holding area for non-productive and landscape 

elements and the obligation to keep the land between the rows covered with grass in vineyards and orchards 

3.6.3.2 Target Scenario and Approach 
The eco-schemes aim at providing financial incentives to farmers for their contribution to the achievement of 

general objective 2 of the CAP - Consolidation of actions to protect the environment and those against climate 

change and the contribution to the fulfilment of the European Union's environmental and climate objectives, 

closely following the achievement of all 3 objectives strategies with a focus on: 

✓ mitigating climate change,  

✓ improving biodiversity  

✓ ensuring high-quality, safe, nutritious food produced by sustainable methods.  

The ecoschemes address the protection of natural resources managed by farmers in the agricultural production 

process, characterized by their contribution to reaching the action areas of the new CAP, respectively:  

✓ mitigating climate change, including reducing greenhouse gas emissions from agricultural practices, as 

well as maintaining existing carbon stocks and increasing carbon sequestration capacity;  

✓ adaptation to climate change, including actions to improve the resilience of food production systems, as 

well as to increase animal and plant diversity, for greater resistance to disease and climate change;  

✓ preventing soil degradation, restoring soil, improving soil fertility and nutrient management and soil 

biocenosis;  

✓ protecting biodiversity, conserving or restoring habitats or species, including the maintenance and 

creation of landscape elements or non-productive areas; 

Conservative agriculture promotes technologies that involve minimal intervention on the soil (renunciation of a 

large number of passes on the soil: plowing, harrowing and the other work of preparing the germinal bed or caring 

for the crops). One of the specific practices defined by the ecoscheme will stimulate conservative crop 

establishment technologies through no-tillage, strip tillage or minimum tillage systems. In general, a degree of soil 

coverage with these conservative practices in weight of more than 50% contributes to increasing the ability of the 

soil to adapt to the effects of climate change, by preventing erosion and moisture loss from the soil. Thus, the 

quality of the soil is maintained and augmented and aims to increase the biodiversity in the soil, while ensuring a 

favorable habitat for the development of fauna. At the same time, as a result of the conservative technology, an 

improvement in the texture and structure and the biota of the soil will be obtained, the increase in organic matter 

in the soil. 
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3.6.3.3 Interaction Analysis 
Figure 40 provides the interaction analysis of the Eco-scheme monitoring UC in a UML like Use Case Diagram 

approach. 

 
Figure 40: UC 6.3 Interaction Analysis  

As can be seen, Actor 1 interacts with the AgriDataValue system and provides: a) raw data related to soil moisture 

(local microclimate data), b) feedback on crop status, informing the system about the stadium of crop growth, c) 

feedback on the consumption of chemical substances in fertilization, d) feedback on surface erosion of agricultural 

land and e) feedback on soil fertility. Moreover, through ADS-M can provide big historical data and semi-trained 

circular economy ML models under specific incentives/fee. To facilitate research and experimentation, actor 2 

(agricultural research and climate monitoring institutes) is allowed to interact directly with ADS-C and receive any 

type of historical data, meteorological data and drone/satellite data along with models . ML trained. Instead, Actor 

2 provides more advanced or experimental ML model that can be used by Actors 1 and 3.  

Through certain smart contracts, Actor 3 can retrieve any type of data, shared advice information, including shared 

historical data, drone and satellite data, eco-scheme advice, and ML trained models. Finally, Actor 4 directly 

through the ADS-C module imposes the policy platform for eco-schemes and retrieves individual eco-schemes 

statistics to be used in the calculation of national/regional CAP support funding. Finally, the person from both 

actor 4 and actor 5 (stakeholders/EU policy) retrieves regional statistics on eco-schemes to assess the level of 

achievement of CAP-specific policies/strategies. 

3.7 Use Cases Cluster 7: Climate monitoring  

Climate change poses significant challenges to the agricultural sector, impacting crop growth, livestock 

production, and overall farm productivity. To effectively adapt to these changing conditions and build resilience, 

farmers and policymakers rely on climate monitoring as a crucial tool. Climate monitoring refers to the systematic 

observation and analysis of weather patterns, atmospheric conditions, and long-term climate trends. This essay 

explores the role of climate monitoring in agriculture, its importance, the advantages it brings to the sector, and 

real-life use case examples showcasing its potential in improving agricultural practices and outcomes.  

Climate monitoring plays a vital role in agriculture by providing valuable information about weather patterns, 

climate variability, and climate change impacts on crop growth, pests, diseases, and water availability. It involves 
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collecting data from weather stations, satellites, remote sensing technologies, and climate models. This data is 

analysed to generate climate indicators, forecasts, and early warning systems that guide farmers in making 

informed decisions regarding planting schedules, irrigation management, pest control, and other agricultural 

practices. 

Climate monitoring is crucial in agriculture for several reasons: 

• Enables farmers to anticipate and adapt to climate-related risks, such as extreme weather events, droughts, 

and shifts in temperature and rainfall patterns. By monitoring climate indicators like temperature, 

precipitation, and humidity, farmers can make timely adjustments to their farming practices, ensuring 

optimal crop growth and minimizing losses. 

• Helps farmers identify long-term climate trends and predict future conditions. This information is invaluable 

for strategic planning, allowing farmers to choose suitable crop varieties, adjust planting dates, and 

implement irrigation strategies tailored to changing climatic conditions. By proactively adapting to the 

changing climate, farmers can enhance productivity, reduce vulnerability, and maintain long-term 

sustainability. 

• Facilitates precision agriculture, enabling farmers to apply inputs like water, fertilizers, and pesticides more 

efficiently. By using climate data and sophisticated technologies, farmers can precisely target areas in need, 

minimizing resource wastage and environmental impact. 

• Supports optimal water management. By monitoring rainfall patterns and soil moisture levels, farmers can 

implement effective irrigation strategies, ensuring that water is used judiciously, and crops receive adequate 

hydration. This enhances water-use efficiency, saves resources and mitigates the impacts of water scarcity. 

• Aids in pest and disease management. By tracking temperature and humidity conditions, farmers can 

anticipate the emergence of pests and diseases, enabling timely interventions and reducing the risk of crop 

damage. Early warning systems based on climate monitoring data help farmers take preventive measures, 

such as adjusting planting schedules or applying targeted treatments, minimizing yield losses and the need 

for excessive chemical inputs. 

However, as climate change is a mid- to long term process, even within AgriDataValue it is quite difficult to define 

specific Use Cases that have tangible results within the project lifetime. Instead, we define a number of Climate 

related use cases that mainly target Climate Monitoring and their influence in various activities of the project. In 

the following we highlight some UC already applied at different locations in the world, which would be of 

AgriDataValue interest. However, specific implementation and validation needs further analysis: 

• UC 7.1: Use of Climate Monitoring in Precision Farming. In Netherlands, Farmers may utilize climate 

monitoring data, along with advanced technologies like remote sensing and drones, to optimize nitrogen 

fertilization [77]. By monitoring climatic conditions and nitrogen levels in the soil, farmers precisely tailor 

fertilizer applications, reducing nitrogen runoff and environmental pollution. 

• UC7.2: Climate Monitoring for Water Management. In Australia, the Murray-Darling Basin Authority uses 

climate monitoring data to manage water allocations in response to changing climatic conditions [78]. By 

monitoring rainfall patterns, river flows, and evaporation rates, the authority can allocate water resources 

more effectively, balancing the needs of agricultural production and environmental sustainability. 

• UC7.3: Climate Monitoring for Disease Management. In the United States, the Integrated Pest Management 

(IPM) program utilizes climate monitoring to forecast the spread of pests and diseases. [79] For instance, the 

program uses climate data to predict the risk of late blight disease in potato crops. By monitoring temperature 

and humidity conditions, farmers receive timely alerts and can implement preventive measures, such as 

adjusting irrigation practices or applying fungicides, to mitigate disease outbreaks and minimize crop losses. 
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• UC7.4: Climate Monitoring for Crop Planning. In India, the Indian Agricultural Research Institute (IARI) uses 

climate monitoring data to develop crop planning tools [80]. By considering historical climate data, rainfall 

patterns, and temperature trends, the institute provides farmers with guidance on suitable crop varieties and 

ideal planting dates. This helps optimize crop yields, reduces the risk of crop failure, and improves overall 

farm profitability. 

• UC7.5: Climate Monitoring for Livestock Management. In New Zealand, farmers use climate monitoring to 

manage livestock health and well-being [81]. By monitoring temperature, humidity, and heat stress indices, 

farmers can implement measures to prevent heat stress in dairy cows, such as providing shade, proper 

ventilation, and access to cool water. This ensures the welfare of the animals and maintains milk production 

during periods of extreme heat. 

• UC7.6: Climate Monitoring for Soil Health. In Brazil, the Agricultural Research Corporation (EMBRAPA) 

employs climate monitoring data to assess soil moisture conditions and develop irrigation strategies [82]. By 

combining climate data with soil moisture sensors, farmers can make informed decisions about irrigation 

timing and volume, optimizing water use efficiency and preventing soil degradation. 

• UC7.7: Climate Monitoring for Crop Rotation. In Germany, farmers utilize climate monitoring data to 

determine the most suitable crop rotation patterns [83]. By considering temperature, rainfall, and soil 

moisture conditions, farmers can optimize the sequence of crops planted, promoting soil health, pest 

management, and nutrient balance. 

• UC7.8: Climate Monitoring for Agroforestry Systems. In Kenya, climate monitoring data is used to guide the 

implementation of agroforestry systems. [84] By assessing rainfall patterns, temperature ranges, and soil 

moisture levels, farmers can select appropriate tree species that complement agricultural crops, enhancing 

biodiversity, soil fertility, and microclimate regulation. 

• UC7.9: Climate Monitoring for Greenhouse Management. In the Netherlands, climate monitoring is crucial 

for greenhouse farming. [85] By tracking temperature, humidity, and CO2 levels, farmers can create optimal 

growing conditions for crops, facilitating year-round production, reducing disease risks, and maximizing crop 

yields. 

• UC7.10: Climate Monitoring for Livestock Feed Management. In Australia, climate monitoring data helps 

farmers manage livestock feed resources [78]. By monitoring rainfall patterns and pasture growth rates, 

farmers can make informed decisions regarding grazing rotations, supplementary feeding, and drought 

management, ensuring optimal nutrition for livestock. 

• UC7.11: Climate Monitoring for Pollination Management. In the United States, climate monitoring is utilized 

to enhance pollination management in orchards [86]. By tracking temperature and rainfall patterns, farmers 

can accurately predict the timing of bloom and coordinate pollination services, maximizing fruit set and yield. 

• UC7.12: Climate Monitoring for Integrated Pest Management. In Thailand, climate monitoring is used to 

implement integrated pest management strategies [87]. By monitoring temperature and humidity conditions, 

farmers can anticipate pest outbreaks, deploy beneficial insects at the appropriate time, and minimize the 

use of pesticides, promoting sustainable pest control. 

• UC7.13: Climate Monitoring for Aquaculture. In Norway, climate monitoring supports the aquaculture 

industry [88]. By tracking sea temperature, salinity levels, and oxygen concentrations, fish farmers can 

optimize fish health, feeding practices, and water quality management, ensuring sustainable aquaculture 

operations. 

• UC7.14: Climate Monitoring for Food Supply Chain Management: In the United Kingdom, climate monitoring 

data is utilized to manage the food supply chain [89]. By tracking weather conditions, including temperature 
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and precipitation, throughout the growing season, retailers and distributors can anticipate crop availability, 

adjust storage and transportation logistics, and ensure the timely delivery of fresh produce to consumers. 

Climate monitoring plays a vital role in agriculture, providing farmers with crucial information to adapt to the 

challenges posed by climate change. By tracking weather patterns, predicting climate trends, and assessing the 

impact on crops, livestock, and water resources, climate monitoring empowers farmers to make informed 

decisions and implement sustainable agricultural practices. The advantages of climate monitoring, such as 

precision agriculture, optimal water management, and improved pest and disease control, contribute to enhanced 

productivity, reduced environmental impact, and increased resilience in the face of climate variability. Real-life 

UCs examples demonstrate the practical application and benefits of climate monitoring, highlighting its potential 

in improving agricultural outcomes and ensuring the long-term sustainability of farming systems. As climate 

change continues to pose challenges to agriculture, the integration of climate monitoring will be crucial for 

building resilient and adaptive agricultural systems worldwide. 

3.8 Captured Data/Information 

On the main line, there are three categories of use cases in this project: 

• Agricultural Use Cases (Cluster 1 to 5) that are executed by agricultural partners’ pilots 

• Climate monitoring Use Cases 

• CAP realization Use Cases 

This section lists the partners involved for each Use case category. It then gives an overview of the 

data/information collected and from which source it is collected. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3.8.1 Agricultural Use Case, partners, and pilots 
The table below gives an overview of the Agricultural Use Cases, indicating in which pilot a UC occurs and which project partner is responsible for execution of the pilot.  
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UC 1.1: Reduce Wasted irrigation water  X  X  X X              
UC 1.2: Reduce Fertilizers   X X  X X              
UC 1.3: Reduce Pesticides X X X   X X              
UC 1.4: Increase potato production/quality       X              
UC 2.1: Precision open field/greenhouse Irrigation/Fertilization       X  X            
UC 2.2: Increase Leek /carrots/root-crops production/quality X      X              
UC 2.3: Optimization of Soluble Solids Content         X            
UC 2.4: Automatization of greenhouse windows for climate 
control 

 
      

 X    
 

  
  

 
  

UC 2.5: Increase control of agri-environmental for organic 
farming 

X 
      

     
 

  
  

 
  

UC 3.1: Fruit trees disease forecast/detection     X     X  X         
UC 3.2: Anti-frost control           X          
UC 3.3: Pest Control on Mediterranean Fruit Fly   X  X                
UC 3.4: Pest Control on Olive Fruit Fly            X         
UC 4.1: Reduce Greenhouse gas emissions        X             
UC 4.2: Reduce nitrogen deposition        X             
UC 4.3: Proactive cattle/pig health/welfare monitoring   X X    X             
UC 4.4: Calving monitoring   X     X             
UC 5.1: Fully Circular ecosystem   X X                 
UC 5.2: Supply Chain transparency for Winemaking    X           X      
UC 5.3: Supply Chain transparency for Meat traceability   X X           X      

UC 5.4: Increase farmers’ digital independence       X              

UC 6.1: Economic risk assessment              X    X X X 

UC 6.2: Real-time input for pilot (satellite images, IoT, weather)              X X X X X X X 

UC 6.3 Benchmarking and Eco-scheme monitoring tools for new 
CAP 
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UC 7.x Climate monitoring             X        



 
 

 

The tables below show an overview of all data/information collected and from where it was collected. 
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4 Technological GAP Analysis 
Provision of digital frameworks, fostering vendor-neutral data exchange, business-oriented organisation of 

information, and assignment of responsibilities for data and service management, needs to be specified and 

provided by any initiative aiming to promote Digital Transformation in the agrifood sector. This is considered the 

foundation for value chain information sharing and exploitation practices, including all relevant economic and 

legal implications involved in data ownership and confidentiality. 

As high-level requirements, the AgriData Space Digital Platform (DP) should provide: 

• data-driven mechanisms and solutions to ease access and exploitation of data (data management),  

• fostering data economy and digital business,  

• vertical and horizontal interoperability1  to boost technological diffusion, to create new services and 

applications, throughout the whole value chain, and potentially create new markets or extend/generalise 

the current ones. 

There are several of Digital Platforms available for the development of intelligent systems, each supporting both 

vertical and horizontal interoperability among datasets, services, and applications. However, this poses an 

inherent difficulty for the decision-making processes of many business owners and system designers; evaluate the 

right platform(s) to find the best fit which will solve their business needs. Also, there specific aspects of these 

needs that must be considered such as scope, maturity, ownership of components, privacy, standards supported, 

implied business models, etc. The various needs lead to more and more technical solutions being brought to the 

market by open-source software communities and eco-systems. 

Currently the landscape of existing data platforms including four main sources of Agri data: data from machinery 

suppliers, alliances and data sharing platforms, open data (e.g., sat and weather data) and other data sources, as 

displayed in Figure 41 below. 

 
Figure 41. The landscape of existing data platforms 

 

 

1 Horizontal: interoperability between substitutable entities (services, platforms, etc) 

Vertical: interoperabilty between complementary entities (services, platforms, etc) 
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A key objective, in general, is the drive to aggregate or federate all these data platforms to facilitate data exchange, 

to increase end-user flexibility and to better use the potential of data in the agricultural sector. In order to address 

this, issues like data interoperability, data governance, and business models about the usage and procurement of 

the data is necessary; in addition, resolving challenges that deal with incentivizing actors to be willing to share 

their data and participate in this data space must also be addressed. 

Quite important is regarded the necessity of using the FAIR (findability, accessibility, interoperability, and 

reusability) principles when it comes to the access, management and use of data. Key in the usage of data is the 

data sovereignty aspect: e.g., companies want to stay in control over the flow of their data and there is a lot of 

potential also in linking data at a cross-domain level. Therefore, focusing on the sovereignty aspect, IDSA 

emphasised an imbalance: on the one hand everyone talks about interoperability, about data exchange, about 

data sharing, about data-centric services, but the topic of data ownership, data security and data value, in general 

“the ability of a natural or legal person to exclusively and sovereignly decide concerning the usage of data as an 

economic asset” has not been sufficiently addressed. 

In this section, we introduce the work from other European projects and initiatives that has been undertaken by 

educational, public, and commercial organizations, and includes the principles and main concepts of Large-scale 

pilot Reference Architectures coming from the smart-farming and agricultural data management domain. We 

focus mostly on data management aspects. 

4.1 Review of data management and privacy focused projects 

Among various initiatives, we highlight some that we consider to be the most important and/or the most relevant 

to AgriDataValue project. 

4.1.1 GAIA-X 
The GAIA-X project [90] aims towards the creation of a federated, open European data infrastructure, enabling 

the interconnection of centralised and decentralised data infrastructures to turn them into a homogeneous, user-

friendly system. Thus, GAIA-X will define the technical principles which foster the implementation of the European 

Data Strategy. Data Sovereignty, i.e., the execution of full control and governance by a data owner over data 

location and usage, is one of the core principles of GAIA-X. The requirement of data sovereignty has led to the 

following high-level requirements for a GAIA-X implementation: 

• Openness and transparency: specifications will be accessible to all GAIA-X participants, technical steering 

and roadmap definitions are conducted in a public process. 

• Interoperability: participants can interact with each other in a defined way. Self-description and policies 

are used to manage interactions between data providers and data consumers. 

• Federation: standardized access and multiple decentralized implementations operated by autonomous 

providers. 

• Identity and trust systems to manage the interaction between GAIA-X participants, without building upon 

the authority of a single corporation or government. 

The core architectural elements in GAIA-X are assets, participants, and catalogues. Participants are natural or legal 

persons that can act as a provider, consumer, data owner, and visitor. Providers can host multiple user accounts. 

Assets can either be a Node, a Service, a Service Instance, or a Data Asset. Hereby, a node is in general a 

computational resource like a data centre or an edge computing device, and nodes can be organized in hierarchies. 

Services can be deployed on nodes and describe a cloud offering. A service instance is the concrete realization of 
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a service running on a node. All nodes, services, and service instances are associated with a provider. Data assets 

are data sets that can be either searched, provided, or consumed by either another service or a participant, are 

hosted on a node, and are owned by a participant. GAIA-X data assets are content- and structure agnostic and 

provide metadata and a self-description. Self-descriptions contain the characteristics of assets and participants, 

and catalogues are the elements that implement the publication and discovery assets and participants. 

The architecture of GAIA-X fosters the development of digital ecosystems and structures them into Infrastructure 

Ecosystems and Data Ecosystems. The infrastructure ecosystem comprises hereby services to transfer, process, 

and store data. Stakeholders of the infrastructure ecosystem can be cloud service providers, edge clouds, HPC 

providers, etc. Under the data ecosystem, actors along the data value chain are summarized. This could be for 

example data providers, data owners, data consumers, or smart service providers. 

Following the global European data strategy, GAIA-X aims to become a Data Ecosystem and Infrastructure covering 

in that way the European values and standards and its architecture is being driven by the overall mission. GAIA-

X’s architecture utilizes both information technology and digital processes to realize the connection among all 

participants belonging to the European digital economy. Through the leverage of standards that now exist, open 

technology, and concepts, it realizes easy-to-use, open, quality-assured, and consistent services and data that are 

characterized by innovation. GAIA-X aims to become a facilitator bringing interoperability and interconnection 

among the several participants both for data and services. 

As known, Digital Sovereignty characterizes the ability or power to make decisions concerning digital processes, 

infrastructures, digital processes, or the way that data are moved, structured, built, and managed. The GAIA-X 

architecture provides technical solutions to establish Digital Sovereignty following EU standards. Digital 

Sovereignty, which is a case of Data Sovereignty, represents full control, execution, and governance by a Data 

Owner on fields such as data location and usage. GAIA-X can enable the participation of Providers and Consumers 

in a digital sovereignty ecosystem via the application of core architectural principles that are described below. 

GAIA-X, as shown in Figure 42, uses technological approaches such as: 

 

 

 

Figure 42. High-level representation of GAIA-X architecture that shows the major architecture components and 
functions that are followed by the Federation Services. 
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a) Federation, supporting standardized access to GAIA-X and implementations in a decentralized way, providing 

a rich digital ecosystem. Each component enhances security policies in the different resources and endpoints of 

the system. 

b) Self-Descriptions and Policies, providing the common elements on a technical level related to the selection, 

coordination and initiation of the interactions between Consumers and Providers. More specifically, the Self-

Descriptions stand for GAIA-X offerings and Policies the stand for requirements. If those two matches, then they 

can start to interact with the GAIA-X ecosystem. 

c) Identity and Trust, helping GAIA-X Participants to verify if their interaction with others and also the services 

they use is reasonable, authentic, and backed by Self-descriptions and Policies. 

 
Figure 43. High-level description of the Federated Identity Model 

As far as the architecture principles is concerned, Figure 43 shows the essential principles gathered from the 

architectural vision and objectives and stand for the main (core) that this architecture follows: 

1) Openness and Transparency: The documentation of GAIA-X technologies and the documentation and 

architectures could be accessed in a worldwide level from the Participants. Everything, such as the roadmap 

of GAIA-X, technical steering of GAIA-X takes place in public and the cooperation with private sector players 

will be uncovered. 

2) Interoperability: Each participant will interact with all the other participants in a well-specified way. Although 

the architecture describes the technical means to succeed in that, it is questioning and operates far from the 

specific implementations. 

3) Federated Systems: GAIA-X (Figure 3) clearly identifies a federated system that comes from autonomous 

Providers, connected with a specified set of standards, legal rules and frameworks. Federation also includes 

decentralization and distribution. 

4) Authenticity and Trust: A secure digital environment can be enhanced without building upon the authority 

of the government or a single corporation. This can be achieved with an identity management system with a 

specified declaration, revocation of trust, and mutual authentication.  
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4.1.2 OpenDEI – Reference Architecture for Platform Interoperability 
OPEN DEI is an EU-funded project, which aims to detect gaps, encourage synergies, support regional and 
national cooperation, and enhance communication among the Innovation Actions implementing the EU 
Digital Transformation strategy [91]. The cross-Industry Digital Platforms federation of the OPEN DEI project 

[92] provides useful insights to the most relevant work in the field of Reference Architecture for building Digital 

Platforms to support the Digital Transformation journeys in the four sectors targeted by OPEN DEI (i.e., 

manufacturing, agriculture, energy, and healthcare). 

The OPEN DEI Reference Architecture Framework (RAF) is built upon 6 main underlying principles as follows: 

• Interoperability through data sharing: Syntactic interoperability between two or more systems is achieved 

by means of using common data formats and communication protocols. Semantic interoperability between 

two systems is achieved when the information exchanged can be interpreted meaningfully and accurately at 

both ends, producing useful results as defined by the end-users of both systems.  

Recommendation 1: OPEN DEI RAF should foster technical interoperability at syntactic and semantic levels, 

via the use of data sharing mechanisms, grounded on well-established standards and design/implementation 

patterns. 

• Openness: In the context of data-driven services, the concept of openness mainly relates to data, data/API 

specifications and software.  

Recommendation 2: OPEN DEI RAF should ensure a level playing field based on open-source 

datasets/software/standards and demonstrate active and fair consideration of the coverage of functional 

needs, maturity and market support and innovation. 

• Reusability: Reuse means that system architects confronted with a specific problem seek to benefit from the 

work of others by looking at what is available, assessing its usefulness or relevance to the problem at hand, 

and where appropriate, adopting solutions that have demonstrated their value elsewhere. This requires the 

involved stakeholders to be open to sharing its interoperability solutions, concepts, frameworks, 

specifications, tools and components with others.  

Recommendation 3: OPEN DEI RAF must support reusing and sharing of data and solutions, enabling 

cooperation in the collaborative development of data models and solutions when implementing Digital 

Transformation pathways. 

• Avoid Vendor Lock-In: When establishing Digital Platforms, system architectures should focus on functional 

needs and defer decisions on technology, if possible, to minimize dependencies on vendors, to avoid 

imposing specific technical implementations or products on their constituents and to be able to adapt to the 

rapidly evolving technological environment. The OPEN DEI RAF should be able to support the adoption of 

concrete open standard technologies to use for the effective sharing of data for example, while at the same 

time choose technologies that will not impose any specific technical implementation and avoid vendor lock-

in. The functioning of an implementation-independent technology requires data to be easily transferable 

among different sub-systems independently of how and who has implemented those subsystems, to support 

the free movement of data. This requirement relates to data portability - the ability to move and reuse data 

easily among different applications and systems, which becomes even more challenging in cross-border 

scenarios.  

Recommendation 4: OPEN DEI RAF should foster access and reuse of their digital services and data 

irrespective of specific technical implementations or products. 
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• Security and Privacy: To establish trust between different security domains requires a common data-sharing 

infrastructure based on agreed standards, policies and rules that are acceptable and usable for all domains. 

In addition to secure solutions, it is necessary to build a trusted ecosystem that includes identification, 

authentication, authorization, trust monitoring and certification of solutions.  

Recommendation 5: OPEN DEI RAF must define a common security and privacy framework and establish 

processes for digital services to ensure secure and trustworthy data exchange between the involved 

stakeholders and in interactions with organization and businesses. 

• Support to a Data Economy: Common data sharing infrastructures should come with marketplace functions 

enabling data providers to publish their offerings associating terms and conditions which, besides data and 

usage control policies to be enforced, may include different formulas for payment: single payment, 

subscription fees, pay-per-use, etc. To support monetization of data, it should also include the necessary 

backend processes supporting data usage accounting, rating, payment settlement and billing. Standards 

enabling the publication of data offerings across multiple compatible marketplaces will be highly desirable.  

Recommendation 6: OPEN DEI RAF must define a data marketplace framework enabling parties to publish 

open and priced data, supporting the creation of multi-side markets and innovative business models which 

bring support to the materialization of a Data Economy. 

The Reference Architecture Framework (RAF) proposes reusability as a driver for interoperability, recognizing that 

the data-driven services for DT should reuse information and services that already exist and may be available from 

various sources inside or beyond the organizational boundaries of the adopting organizations. Information and 

services should be retrievable and be made available in interoperable formats (e.g., adhering to FAIR principles 

[93]). To this end, the core reusable Model Building Blocks (MBBs), mainly representing information sources and 

services, should make their data or functionality accessible through well-defined services supporting data-

oriented and event-driven interactions. The reusable building block approach finds a suitable application by 

mapping solutions against the conceptual building blocks of a Reference Architecture that allows reusable 

components to be detected, which also promotes rationalization. 

The OPEN DEI project has defined the approach for designing a common Reference Architecture Framework able 

to describe the Cross-Domain Digital Transformation. 

The extensive use of sensors and connected devices is a common scenario in the implementation of many Digital 

Transformation solutions and in many industrial sectors. The huge amount of available data is able to cover many 

business scenarios. Data-driven pipelines and workflows management is nowadays crucial for data gathering, 

processing, and decision support. To deal with this complexity OPEN DEI has adopted the following 6C 

architecture, adapted from the one suggested by the German Industrie 4.0 initiative [94], and based on the 

following pillars (using a bottom-up reading): 

• Connection, making data available from/to different networks, connecting systems and digital platforms, 

among several IT cultures and cross organizations’ boundaries, start from the capability to make data 

available from/to different physical and digital assets. Different devices or sensors are used to acquire a 

variety of IoT data, but also many systems are based on unstructured or multi-media files. Data and 

information may also come from existing IT systems, using sector-specific protocols or more common 

standards coming from the Internet of Things (IoT) world used to realize data transfers. 

• Cyber, modelling in-memory based solutions to convert data into information, leveraging several information 

conversion mechanisms. Digital representations (of assets, data, and information) will be then shared with 

upper layers of the pyramid to improve the self-healing properties of the overall system. 
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• Computing, storing, and using data on the edge or on the cloud. Many of modern digital platforms use a 

combination of cloud and edge computing models, based on driving factors for establishing more centralized 

and powerful computation capabilities, or faster, connectivity friendly and secure computing at the edge of 

the digital networked platform. The forces fuelling the demand for distributed computing technologies are 

advancing rapidly. This will create a paradigm shift for organizations moving along new digital transformation 

pathways, with potential changes affecting all players in the target business ecosystem. 

• Content/Context, correlating collected data for extracting information, creating a digital space for data- 

information continuum, not something to push out to one side of the adopted information architecture. 

Modern businesses need a comprehensive approach with the end goal of driving the data (processing) and 

information needs. However, exploiting data is not as straightforward. Thus, data needs to be acquired 

(captured, entered via a data pipeline) and processed with a goal and context in mind, making it information, 

which essentially is about processed data, before moving to the next levels. 

• Community, sharing data between people and connecting stakeholders for solving collaboration needs. 

Networked organizations will be able to collect and share knowledge and opportunities in the widest number 

of sectors so that its members can make the right decisions. The community around organizations could 

become increasingly important to collect and share information in a push-pull fashion. 

• Customization, personalizing by following each user’s perspective creates added value to data and at the 

same time match their expectations. Multiple strategies can make it possible to address all aspects of the 

end-user expectations and empower an individual to progress through platform functionalities in a natural 

way. Democratizing access to data is a promising approach to help unlock the value of data, but even the 

most advanced technology is of little value if people do not embrace it. This is a lesson that many businesses 

have learned the hard way; to avoid pitfalls, it is crucial to properly understand end-user expectations and 

build the platform from the ground up while keeping in mind that the intended audience, even within a single 

organization, can be diverse and must be properly segmented and with specific and varying needs. 

In this scenario, complex systems based on distributed intelligence will be increasingly designed and operated 

based on accurate data sharing and analysis techniques. But as one of the upper layers is showing, the “smart” 

functions of the platforms will gain more power by using the network and community effects, such that 

organizations’ habits are changed while their dimensions of business are expanded. 

 

Figure 44. 6C Architectural Model 
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4.2 Review of Reference Architectures in Smart Agriculture projects 

The Reference Architectures briefly described below come from recent large scale projects which also involved 

many pilot applications. These projects adapt their research architecture leveraging on Reference Architectures 

from past research projects and initiatives, such as those coming from IoT reference models and from the Big Data 

frameworks. Then, they customize these architectures, as their goal is to deploy systems based on these Reference 

Architectures to address large scale (and numerous) pilot applications. A main aspect of all these Reference 

Architectures is the data management and how this is achieved taking (data, user) privacy into account. 

4.2.1 DEMETER 
There are a variety of smart farming systems and platforms already deployed, employing many different 

communication, sensing, and data processing technologies. DEMETER [5] proposes an overarching approach that 

integrates heterogeneous technologies, platforms, and systems, while supporting fluid data exchange across the 

entire agri-food chain, addressing scalability and governance of data ownership. In this way, it offers a way for the 

integration of already deployed smart farming and platforms, which could employ several different 

communication, sensing, and data processing technologies. 

The proposed approach enables existing Agriculture Knowledge Information Systems (AKISs) to continue their 

operation, but also allows those systems to both make available and consume data from other cooperating 

systems. Additionally, newer technologies and services can be exposed and included in updated applications that 

may be of interest to the cooperating AKISs. This is more realistic and viable in terms of usability, market adoption, 

and sustainability. Furthermore, another goal is to facilitate the exchange and interoperability of data, from 

various sources and in different formats potentially, which is needed to create advanced applications. DEMETER 

proposed architecture consists of services available from DEMETER Providers and to DEMETER Consumers, and is 

loosely based on the architecture model introduced by the Industrial Data Space (IDS) [95], then further specified 

by the International Data Space Association (IDSA), which is the continuation of IDS. This model is also consistent 

in general with more recent initiatives such as GAIA-X. 

As data interoperability is of critical importance, the proposed solution provides the necessary data translation 

mechanisms combining the use of a semantic data model (Agriculture Information Model — AIM) developed by 

DEMETER, along with the respective data translation/management/inference mechanisms adopting widespread 

standardised solutions such as NGSI-LD, Saref4Agri [96], ADAPT [97], etc. To enable interoperability of 

heterogeneous data handling approaches, the DEMETER provider-consumer services, deployed on various AKISs, 

translate and exchange data based on the AIM common data format with the use of lightweight data 

wrappers/translators. For this conversion to be feasible, each AKIS needs to provide the specifications of the 

utilized data model and semantics, or it should parse returning content in the AIM format. The AIM is not built ab 

initio but incorporates and extends existing ontologies and vocabularies already available for this domain. 

4.2.2 DataBio 
The DataBio project [2] follows the BDVA Reference Architecture. An exhaustive list of all the 91 components have 

been defined by the DataBio platform. In the DataBio Architecture, the top layer has the data visualisation and UI 

tools (e.g., 2D, or 3D visualisation). This sits on top of the data analytics layer that generated data for the UI using 

techniques such as neural networks; this layer uses components for descriptive analytics, which analyse past (or 

historical) data to understand trends and evaluate metrics over time, predictive analytics aim to predicts future 

trends based on past data, and prescriptive analytics which showcase viable solutions to a problem and the impact 

of considering a solution on future trends. Below that sits the data processing architecture which allows batch, 

interactive or real-time processing of data and include the relevant technologies and databases (e.g., Apache).  
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The data management layers are responsible for the collection, preparation and curation of data and they include 

the agrifood data marketplace. At the bottom of the architecture sits the layer of the actual infrastructure used 

such as the cloud, 5G, IoT etc., which enables the connection to devices that provide the data used in the other 

layers. 

4.2.3 IOF2020 
Building upon the IoT reference model (see standard recommendation ITU-T Y.2060 dated 06/2012) which is 

presented in the figure below, and its evolution which is the functional view of the IoT-A ARM, the IoF2020 [3] use 

case pilots utilize customized architectures, one for each specific use case. 

For example, in the next figure, we present the functional view a IoF2020 Use Case. More specifically, the 

application layer sits at the top of the architecture, with the device layer at the bottom. On top of the device layer 

sits the connectivity layer (see “Communication” layer in the IoT-A Architectural Reference Model) and between 

this and the application layer there is the service support and application support layer (the components of which 

correspond loosely to the other layers in the IoT-A Reference Model); for example, clearly the IoT service layer 

corresponds to the equivalent layer in the IoT-A Reference Model. The only exception seems to be the information 

mgmt. layer (also referred as data layer in other figures) part of which seems to correspond partly to the business 

process management layer and part to others in the IoT-A Reference Model. Finally, Management and Security 

(at the sides) apply to all layers. 

 
Figure 45. IoF2020 use case 1.4 

What the IOF2020 approach and its architectures lack, their main drawback, is semantic interoperability. More 

specifically, it would be far more desirable that the architecture should allow different services to be used and 

input into the same platform on a need basis. To achieve this, the architecture should incorporate common data 

management tools and common data frameworks for storing, processing, and transmitting the knowledge 

collected through raw input data, or processed data by various services and tools. It should also employ a portfolio 

of communication protocols as appropriate to receive the input data from various sources (mainly devices but 
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also human user if appropriate). Furthermore, it should provide services that “translate” between data formats 

(e.g., those used by devices that input data into the platform) to maintain semantic interoperability. Finally, ideally 

the services used should use a common standard so that they can be used and composed together on demand for 

the different application domains and problems without the need for expensive and time-consuming 

customization. 

4.2.4 AFarCloud 
AFarCloud (Aggregate FARming in the CLOUD) [4] is an ECSEL project whose goal is to provide a distributed IoT 

platform for early adopter farmers and rural professionals willing to use agriculture real-time computer systems 

to increase efficiency, productivity, animal health and food quality, and also to reduce agricultural labour costs. 

This platform is integrated with farm management software and supports monitoring and decision-making 

solutions based on Big Data and real time data mining techniques.  

The AFarCloud platform consists of three main functional components: (i) the Farm Management System, (ii) the 

Semantic Middleware and (iii) the Deployed Hardware layer. Besides, the AFarCloud platform interconnects with 

other data sources like 3rd Party legacy systems databases.  

The Farm Management System offers: a Mission Management Tool (MMT) to plan cooperative missions involving 

Unmanned Aerial Vehicles (UAV) and ground vehicles ranging from fully autonomous UGVs to legacy systems; a 

Decision Support System (DSS) to make decisions pre-, during- and post-mission; a system configurator to 

configure the above-mentioned systems, including their key hardware components (mission relevant sensors and 

other component important for performing a mission); and, applications for the user to manage and monitor the 

whole system. 

The Semantic Middleware offers among others, components for: data storage and retrieval from the Cloud; 

managing and cataloguing images; registration of IoT devices, animals, and vehicles in the farm; data flow 

management inside the platform; managing, controlling and acquiring data from IoT devices and missions 

involving ground and aerial vehicles; data processing and knowledge extraction. The Semantic Middleware 

implements a software layer that hides the underlying complexity of the deployed hardware, so that the Farm 

Management System can access to that hardware in a unified way.  

The Deployed Hardware layer provides means to deploy and integrate the services and data related to unmanned 

aerial vehicles, semi-autonomous ground vehicles, actuators, sensors and other IoT devices. 

Something that is still missing (since it was not in the scope of that project) from this architecture is the support 

for the interoperability between several farm platforms (FMS) and their offering services and not just repositories. 

4.2.5 DjustConnect 
DjustConnect is a neutral data exchange platform, managed by the Institute for Agricultural, Fisheries and Food 

Research (ILVO), available for all data users in the Agrifood sector. DjustConnect originated as an EFRO (European 

Fund for Regional Development) project, called Datahub for AgroFood, with the support of its founding companies 

(AVEVE, Boerenbond, CRV, DGZ and Milcobel) and grew into a fully mature platform, successfully connecting data 

receivers and farmers, enabling data-driven applications to thrive.  

The mission is to stimulate data exchange in the Agrifood sector with respect for the different stakeholders; the 

usage and valorisation of data, eliminating repetitive, boring data entries, unlocking the full potential of 

applications and creating benefits throughout the value chain. DjustConnect wants to provide a means of data 
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exchange respecting data ownership, farmers and providing decision power, regarding the data exchange, to the 

different parties involved. 

DjustConnect is for everyone who wants to contribute to innovative agriculture through data sharing with respect 

for farmers. Farmers and horticulturist produce quality products, but also quite a lot of data. A lot of these 

company data are shared with others, such as the government, suppliers, buyers, producer organisations or 

cooperations. This data sharing has great advantages because they get smarter digital tools, optimal service or 

less administration in return. However, as a company manager it is not always easy to keep a clear overview of 

who has access to which part of your data. DjustConnect provides agricultural business the control over their data. 

They decide to whom and why they share their data. This way they can safely manage their data and safely enjoy 

all the benefits of their data. Also suppliers, buyers, producer organisations or agricultural cooperations have 

access to data. This are either their own company data or data managed from farmers. These data can have great 

additional value for data receivers. They can use this data to improve their services and products or to develop 

new digital products. DjustConnect ensures that these data receivers find the data providers, that they don’t need 

to invest in an own data sharing infrastructure, that the data transactions are easily managed and that everything 

is handled correctly through one DjustConnect contract. Companies that want to expand their products or services 

by using data-input from the agrifood sector, act as data receivers. They find an overview of available data on the 

DjustConnect marketplace [98]. If present, DjustConnect will make sure their data-request will end up with the 

right owner. This way data sharing goes 100% according to the Code of Conduct without they need to manually 

manage permissions. When granted permission they will get access to the data with one connection. The legal 

side is also simplified as DjustConnect makes sure all transactions are performed in a legally correct manner. This 

way data sharing is safe, transparent and simple for everyone. 

4.2.6 Summary 
In the table below, the key components or design features of each one of the architectures described in the 

previous subsections are present in the following table: 

Table 1. Examples of Large-scale Pilot Reference Architectures analyzed 

Organisation Description 

DEMETER 

The key benefits of DEMETER are that it connects a human-focused interaction space with 

the actual digital implementation space. This ensures the fact that DEMETER remains fully 

human-centric and human-driven – delivering digital enablers that are fully aligned to the 

needs expressed by the farmers and based on the knowledge and wisdom captured through 

structured mechanisms. All communication with external third parties is based on the 

DEMETER Agriculture Information Model (AIM), a common semantic data model used for 

information exchange across the DEMETER ecosystem. Moreover, the notion of the 

DEMETER-enhanced Entity (DEE) is that a service, application, platform, or thing is being 

wrapped with DEMETER enabler functionalities to act as a DEMETER consumer and/or 

producer. Many of these DEEs interoperate with each other to form an application solution. 

DataBio 

DataBio has the following layers, starting from top-to-down approach: 1) Data visualisation 

and User interaction, 2) Data Analytics, that uses neural networks, 3) Data Processing 

Architectures, in order to process interactive, batch or real-time data, 4) Data Management 

layer that collects, prepares and curates data, 5) Infrastructure, that uses technology 

solutions in order to connect devices. 

IOF2020 
IOF2020 builds upon the IoT reference model and its evolution the functional view of the 

IoT-A ARM; this is a layered architecture where the devices sit at the bottom, with 
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communication facilities on top of them linking them to the service and app support layer, 

while at the very top sit the applications. Security and data management are present as 

vertical slices that cover all the layers. IOF2020 customizes this architecture for each of its 

use case pilots, therefore each one utilizes a slightly different, customized architecture, 

depending on the needs of the specific use case; without having generic interoperability 

facilities (without customization). 

AFarCloud 

AFarCloud provides a distributed IoT platform for farmers and professionals so that they can 

increase efficiency, animal health, productivity and food quality, and reduce the costs on 

labouring. The basic elements of the AFarCloud are the following: 1) Farm Management 

System, 2) Semantic Middleware, 3) Deployed Hardware. It can also connect to other data 

sources such as 3rd Party data or legacy systems DB. 

DjustConnect 

DjustConnect stimulates data exchange in the Agrifood sector with respect for the different 

stakeholders; the usage and valorisation of data, eliminating repetitive, boring data entries, 

unlocking the full potential of applications and creating benefits throughout the value chain. 

DjustConnect provide a means of data exchange respecting data ownership, farmers and 

providing decision power, regarding the data exchange, to the different parties involved. 
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5  Climate change-agriculture nexus 

5.1 Review on climate change-agriculture nexus and impact in EU 

The climate change agriculture nexus refers to the intricate relationship between climate change and agriculture. 

It recognizes the significant impact of climate change on agricultural systems and, in turn, the influence of 

agricultural practices on climate change. This concept highlights the interconnectedness and mutual dependency 

of these two domains. 

Climate change affects agriculture in several ways. Rising temperatures, changing rainfall patterns, increased 

frequency of extreme weather events (such as droughts, floods, and storms), and altered pest and disease 

dynamics pose significant challenges to agricultural productivity, food security, and rural livelihoods. These 

changes can disrupt crop growth cycles, reduce yields, degrade soil fertility, increase water stress, and threaten 

the overall stability of agricultural systems. 

Conversely, agriculture exacerbates climate change diversely. Deforestation for agricultural expansion releases 

carbon dioxide (CO2) into the atmosphere, reducing carbon sinks and exacerbating GHG emissions. Additionally, 

agricultural practices such as livestock rearing, rice cultivation, and the use of synthetic fertilizers generate 

methane (CH4) and nitrous oxide (N2O), potent GHGs. Furthermore, soil erosion and degradation resulting from 

unsustainable farming practices can release stored carbon, further contributing to climate change. 

The climate change agriculture nexus highlights the need for a comprehensive approach that addresses both 

adaptation and mitigation strategies. Adaptation focuses on developing resilient systems that withstand climate-

related stresses and continue to provide food security. This involves implementing techniques like climate-smart 

agriculture, crop diversification, improved irrigation methods, and climate-resilient crop varieties usage. 

Mitigation efforts aim to reduce GHG emissions from agricultural activities. This includes promoting sustainable 

farming practices, precision agriculture, agroforestry, and the adoption of renewable energies. Additionally, 

reducing food waste and improving efficiency along the agricultural value chain can contribute to climate change 

mitigation. 

Understanding and managing the climate change agriculture nexus is crucial for sustainable development, 

ensuring food security, and minimizing the environmental impact of agriculture. It requires interdisciplinary 

collaboration, policy support, technological advancements, and the active involvement of farmers, researchers, 

policymakers, and other stakeholders to address the complex challenges posed by climate change in this sector. 

The climate change-agriculture nexus in Europe has profound implications for the agricultural sector, food 

security, and rural livelihoods. Here is a review of some key impacts and examples illustrating the relationship 

between climate change and agriculture in Europe: 

• Changing Growing Seasons: Rising temperatures and altered precipitation patterns are disrupting the 

traditional growing seasons in Europe. Warmer winters and earlier springs can lead to changes in crop 

phenology, affecting flowering, pollination, and fruit development. For instance, in some regions of Europe, 

grape harvests for winemaking have shifted to earlier dates due to warmer temperatures. 

• Shifts in Crop Suitability: Climate change is causing shifts in the suitability of crops across Europe. As 

temperature and rainfall patterns change, some areas may become less suitable for certain crops, while 

others may open up new opportunities. For example, olive groves in southern Europe are facing increased 
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risks due to more frequent heatwaves and droughts, while regions in northern Europe are exploring the 

viability of growing olives as the climate becomes more favourable. 

• Increased Water Stress: Changing precipitation patterns and increased water scarcity pose significant 

challenges for European agriculture. Reduced water availability impacts crop growth, livestock production, 

and irrigation practices. In regions like the Mediterranean, drought conditions are becoming more frequent, 

leading to decreased crop yields and challenges in maintaining livestock. 

• Pest and Disease Dynamics: Climate change influences the distribution and behaviour of pests and diseases, 

affecting agricultural productivity and crop health. Warmer temperatures can facilitate the expansion of pests 

and the emergence of new diseases. For example, the spread of the European corn borer (a pest) northward 

into new regions in Europe has been linked to warming temperatures, posing risks to maize production. 

• Impacts on Livestock: Livestock farming in Europe is vulnerable to climate change impacts. Heat stress on 

animals can reduce productivity, affect reproduction rates, and increase mortality rates. For instance, 

heatwaves have led to significant losses in dairy cow productivity in some regions. Additionally, changing 

pasture availability and quality can impact livestock nutrition and forage availability. 

• Coastal Vulnerability: Climate change-induced sea-level rise and increased coastal flooding pose risks to 

agricultural areas in low-lying coastal regions. Saltwater intrusion can contaminate agricultural lands and 

compromise soil fertility. The Netherlands, for example, has implemented innovative measures such as 

floating farms to adapt to rising sea levels and safeguard food production. 

These examples highlight the complex and varied impacts of climate change on European agriculture. Efforts to 

address the climate change-agriculture nexus in Europe involve implementing adaptation strategies, such as 

adjusting cropping patterns, promoting resilient crop varieties, improving water management, and enhancing 

livestock husbandry practices. Mitigation measures include reducing greenhouse gas emissions from agricultural 

activities through sustainable farming practices, agroecology, and renewable energy adoption. It is essential for 

policymakers, farmers, researchers, and stakeholders to collaborate and prioritize climate-smart agricultural 

approaches to ensure food security, sustainability, and resilience in the face of climate change. 

As an example, in France the effect is shown in the following areas: 

1. Vineyard Shifts: Climate change is influencing the suitability of wine grape cultivation in France. Warmer 

temperatures are affecting grape varieties and wine quality. A recent study [99] found that wine-growing 

regions in France are experiencing shifts in suitability, with some traditional wine regions facing potential 

declines in grape quality due to increasing temperatures. This has led vineyard owners to explore new grape 

varieties and adapt their cultivation practices. Another study [100] focuses on modelling the impacts of 

climate change on grapevine growth in Bordeaux vineyards, examining potential yields, phenology (timing of 

growth stages), and canopy density, while another study [101] provides a comprehensive review of the 

impacts of climate change on viticulture (grape cultivation) in France, covering aspects such as grapevine 

growth, grape quality, and wine production. 

2. Heat Stress on Livestock: Rising temperatures and heatwaves pose challenges for livestock farming in France. 

Heat stress affects animal welfare, reproduction, and milk production. A recent study [102] examined the 

impact of heatwaves on dairy cow performance in France and found that heat stress led to reduced milk yield 

and increased somatic cell count, indicating compromised udder health. 

3. Water Management Challenges: Changing precipitation patterns and water availability affect agricultural 

water management in France. A recent study [103] assessed the vulnerability of French agricultural areas to 

water stress. The research highlighted the risks of water scarcity in different regions, particularly in 
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Mediterranean and Atlantic coastal areas, and emphasized the need for improved water management 

practices to adapt to changing climate conditions. Another study [104] assesses the impact of climate change 

on agricultural water resources in the French Mediterranean region, using indicators to evaluate the potential 

consequences of changing climate conditions. 

4. Shifts in Crop Phenology: Changing temperature and rainfall patterns influence the phenology of crops in 

France. A recent study [105] investigated the impact of climate change on the flowering dates of major fruit 

trees in France. Other studies have found that apple, cherry, and pear trees have experienced earlier 

flowering dates over the past few decades, which can have implications for pollination, fruit set, and crop 

yields. Another study [106] examines the impact of climate change on the phenology (timing of growth 

stages) of wheat crops in France throughout the 21st century. 

5. Summer crops vulnerability to climate change: Another study [107] investigates the vulnerability and 

adaptation potential of European summer crops, including those in France, to climate change using 

observational data and crop model simulations. 

5.2 The use of Smart Farming in Europe 

Smart farming refers to the application of information and data technologies to the practice of farming. Although 

relatively new, this practice is starting to take hold throughout Europe. Smart farming involves the collection of 

data across a farm, which is then utilized to enhance farming operations. This approach employs advanced 

technologies such as internet-enabled sensors, robots, and satellites to revolutionize agriculture. By utilizing these 

technologies, farmers can identify ways to increase their yield while utilizing fewer resources. Precision agriculture 

is a complementary practice to smart farming that is also known as agriculture 4.0. This approach considers the 

slightest variables involved in running a farm. By making small adjustments, farmers can ensure that they optimize 

every aspect of their farming processes. 

5.2.1 The main technological evolutions involved in Smart Farming 
In this section we analyse some of the most interesting technological evolutions, which are involved and create 

real impact in Smart Farming. 

5.2.1.1 Unmanned Aerial Vehicles (UAVs) 
UAVs are used to inspect health and monitor the growth of large field of crops through remote sensing, crop 
estimation, weed detection, water management, and spraying. UAVs primarily contribute through remote sensing 
[108]. UAVs capture images using visible, near-infrared, thermal spectrum cameras and laser scanners. These 
images provide valuable information to farmers for making informed decisions about their crops and land. 

UAVs are also used in crop estimation by creating a 3D reconstruction of the cultivation through acquired images. 
This is achieved through programming techniques that enable the creation of a 3D model of the vegetation 
structure, allowing for precision analysis [109]. Using multiple UAV flights throughout a growing season can 
provide a historical overview of vegetation growth [110]. Weed mapping is another valuable application of UAVs 
in agriculture, as it can reduce the need for chemical inputs and labour from farmers. Multispectral cameras, a 
primary component of UAVs, can also be used in water management techniques [111] by providing information 
on the humidity levels of crops. Lastly, UAVs are being tested for spraying operations [112] with the goal of 
reducing pesticide inputs by acting precisely where and when needed.  
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Table 5: Comparison of UAV technologies [113] 

 

Image processing in UAVs: Image processing techniques are employed to create two-dimensional maps using 

images captured by UAVs in various spectrums. These maps are highly valuable for crop monitoring and yield 

estimation, two of the most critical applications in agriculture. Several vegetation indices are used in the literature 

for these purposes, including NDVI, GNDVI, and SAVI for crop monitoring, and ARI, MARI, RGI, ACI, MACI, CI, and 

GRVI for estimating leaf pigments [114]. 

Table 6: Vegetation Indices [114] 

 

ML application in UAVs: ML and Deep Learning techniques are used in various tasks in agriculture and are 
expected to bring significant improvements. For example, they are used in crop monitoring [115], in water 
management [116] to identify diseases [117] and to classify weeds [118]. 

The main advantaged of UAVs are that they 1) give the farmer a bird’s eye view of their field in a short time; 2) 
lower the operational cost and 3) are more flexible and less expensive that other monitoring technique such as 
manned airborne and satellite inspection.  

Since 2019 (revision in 2022), EU Regulations 2019/947 and 2019/945 [119] set out the framework for the safe 
operation of civil drones in the European skies. They adopt a risk-based approach, and as such, do not distinguish 
between leisure or commercial civil drone activities. What they consider is the weight and the specifications of 
the civil drone and the operation it is intended to conduct. However, there are still no fixed regulations in all EU 
countries, which may hinder UAVs development and use. 
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5.2.1.2 Unmanned Ground Vehicles (UGV) 
The use of UGV is still at an experimental phase but is promising. An UGV can perform various tasks in the field 

like seeding, harvesting, weeding, spraying, pruning, and crop monitoring [120]. Existing UGVs have been tested 

on numerous crops including grapes, peppers, cucumbers, tomatoes, asparagus, sunflowers, sugar beet, and 

hazelnuts. Researchers aim to develop UGVs which can work in swarms or cooperate with UAVs to perform 

complex tasks [121] 

  

  
Figure 46: Exampled of UGVs in smart Farming 

The main advantaged of UGVs are they reduce the required labour effort and boost accuracy of the operations in 

the field, while they decrease in operational cost. Moreover, they offer precise appliance of fertilizers and 

pesticides and reduce the environmental impact. Finally, the small size of the UGVs comparing with the existing 

heavy machinery will avoid the massive soil compaction and reduce energy consumption. 

5.2.1.3 Wireless Sensor Networks (WSNs) 
Various wireless technologies have been used during the last decades, like Bluetooth Low Energy (BLE), WiFi, 
3G/4G, SigFox, Narrowband IoT (NB-IoT), and LoRa. The following table provides a comparison of wireless sensor 
networks applied to smart agriculture. 

Table 7: Comparison of Wireless Sensor Networks  
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5.2.2 Adoption of smart farming technology, benefits, and barriers in Europe 
This sub-section offers an overview of the adoption of smart farming technologies in European countries along 

with the benefits of using smart farming technology, and the barriers to increasing the adoption rate. 

A 2020-study led across Europe on the adoption of smart farming technologies identified that the larger the farms, 

the greater the adoption rate [122]. Farms under 10 ha have significantly less adopters than farms that are 101 ha 

and larger. Farms that are over 500 ha were exclusively adopters. The difference in adoption rate significantly 

varies between countries, the farm size, and the cropping systems. For example, both Greece and Serbia had lower 

rates of adoption than Germany, the Netherlands, and the UK. Further, arable farmers had a significantly higher 

rate of adoption than both tree crop and vineyard farmers, which was interrelated with farm size differences. 

Training in agricultural technologies also appear to be crucial for increasing adoption rate of smart technologies. 

However, in some countries, such as France, the raise of education level of farmers faces a structural standstill 

with the lack of accessible options within the French education system for farming-oriented higher education level 

diploma for future farmers [123]. 

Overall smart farming technologies offer improved farm practices related to better communication, better 

surveillance system, a more optimized practice, better execution, better knowledge spill over, and better 

environmental performance. This section focuses on the economic and environmental benefits. In their PhD 

dissertation, Hanitravelo reviewed 34 studies that discussed environmental benefits of digital technologies (2020). 

Table 32 at Annex section 11.1 offers a summary of this scoping review. The review identified that the use of 

digital technologies in farming allows a decrease in energy consumption, water and pesticide use. The idea is that 

digital technologies allow farmers to optimize input use and thus emit fewer pollutants that have negative impacts 

on the environment. Although digital technologies seem to have a positive impact on the environment, there is a 

gap in research on impacts on the entire agricultural sector, notably towards whether digital tools in agriculture 

improve knowledge about environmental practices [124]. 

5.3 Economic performance 

Researchers have highlighted the challenge of low adoption rates for digital technologies in agriculture. When 

only a few large farms adopt these technologies, it is difficult to predict the same benefits for medium-sized and 

small farms. The issue is exacerbated by the fact that the primary factor distinguishing users and non-users of 

digital technologies is their attitude toward them. For instance, a survey of 971 farmers who grew wheat, potatoes, 

and cotton in five European countries (Belgium, Germany, Greece, The Netherlands, and the UK) revealed that 

adopters were motivated by the economic return, while non-adopters were more sceptical [73]. 

Several studies have examined the economic impacts of digital technologies in agriculture, with some concluding 

that their costs are too high to be profitable for farmers. For instance, the aforementioned survey [73] identified 

economic cost as a major barrier to adoption. In the USA, a study found that the profitability of variable nutrient 

availability in a rotation of rice and soybean was highly sensitive to factors such as residual phosphorus and 

percentage of clay in a field’s soil [125]. Similarly, two studies in China on the adoption of RFID technology 

suggested that digital technologies were too costly for farmers [126]. Overall, the challenge for farmers in 

benefiting from digital technologies is that they must invest in the entire package of recording, guidance, and 

execution technologies to make them operational and profitable. This often makes the investments prohibitively 

expensive for small or medium-sized farms. 

Some studies suggest that digital technologies can have economic benefits for farmers. For instance, sensor-based 

variable rate nitrogen application could result in farmers losing up to €30 per hectare or gaining up to €70 per 

hectare. Additionally, increased turnover due to the use of ICT or an 80% reduction in on-farm labour due to 
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milking robots could also lead to economic benefits. However, more research is needed to fully understand how 

digital technologies can improve the economic performance of farmers. It is important to note that digital 

technologies are likely to become more affordable, intelligent, and better suited to farm needs in the future. 

There has been limited research on the impact of digital technologies on farm profits, but the available evidence 

suggests that before 2019, small and medium-sized farms may not have benefited from such technologies due to 

high investment costs. Trust is also a significant issue that must be addressed to increase their adoption rate. Table 

33 offers a summary of these studies and the key insights on economic benefits from digital technologies used in 

agriculture. Contrary to the studies on the environment where there was a certain consensus on the positive 

impact of smart technologies, there is a lack of studies illustrating the profitability of digital technologies in 

agriculture [124]. 

5.4 Barriers to adoption of smart farming technologies 

Although all farmers broadly perceive smart farming technologies as useful to farming and generally expect smart 

farming technologies to continue to be so, when it comes to specific on-farm challenges, farmers are less 

convinced of smart farming technologies potential. Both adopter and nonadopter groups are hesitant regarding 

smart farming technologies adoption, such that adopters are somewhat disillusioned about the smart farming 

technologies that they have experience with, and non-adopters because they are not convinced that the 

appropriate technologies are available and accessible. Several barriers on the adoption of smart farming 

technologies in Europe have been identified [122].  

Some of the most common barriers are: 

• High investments costs: a characteristic that inhibits the trialability and evaluation of each smart farming 

technologies relative advantage 

• Lack of neutral advice: Lack of information about existing innovative technologies as well as individual and 

impartial advisory services for farmers 

• Technological incompatibility: Many farmers deplore technological incompatibility of smart farming 

technologies with existing technologies as devices are not interoperable. With digital technologies farmers 

no longer have the possibility to rely on “do it yourself” strategies when mending or adjusting devices, which 

is directly related to compatibility. Farmers would not only need very specific knowledge, but even risk illegal 

practices as software are protected as intellectual property. 

• Lack of end-user’s participation in the innovation process: Smart farming technologies are based exclusively 

on technological advances. In this context, the technology customization on the farmers needs appear to be 

quite limited. The role of farmers in the innovation process is not clearly defined, or even denied. Proposed 

solutions (software, innovations, data involved, and decisions via a “black box”) are often proprietary. The 

farmer is just considered as end-user more than an innovation actor, which would promote their autonomy. 

• Lack of suitable options that are context-specific: Farmers generally must adapt to standard solutions suited 

for the greatest market share. Consequently, the proposed solutions do not fully suit the local heterogeneous 

agricultural needs. Unfortunately, customized solutions realized by businesses would be too expensive.  
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Table 8. Barriers to smart farming technologies adoption in Europe [122] 

 

Especially in France, livestock farmers, especially dairy farmers, are among those who use technology the most. 

They have the highest adoption rate of Decision Support Systems (DSS) and are the third largest group using 

internet for professional purposes (10%) after cereal farmers (17%) and meat breeders (12%). 

Use of digital technology by sampled dairy farmers in France as of 2020: 

• 77% use the Internet as communication technology 

• 50% use DSS 

• 18% use the Electronic Monitoring Tool 

• 11% use the Automatic Milking System 

• Effect of new technology on dairy farmers in France: 

o 15% increase of milk production thanks to internet use (technology improves farmers’ connection 

with their peers, keeping them informed about new innovations, techniques, and practices) 

o The use of Automatic Milking System increases milk production by approximately 25%. 

o The use of DSS increases production by approximately 22% 

o the Electronic Monitoring Tool (EMT) increases production by around 38% 

Effect of these technologies are higher for low and medium yielding farms (compared to already very high yielding 

farms). Although the technologies are more adopted by farmers on the most intensive farms, the effects on 

production are more beneficial for the less intensive ones. Table 9 offers an overview of the different tools, 

software, experimentation, and institutional efforts towards smart farming in France. 

Table 9: Current adopted smart-farming technologies in France and surrounding countries 

Name Description Location Source 

360 viti Web platform for agronomic decision management in viticulture 
France/ 

USA 
[127] 

Agricolus 
Complete platform for precision agriculture, Idroplan helps you to 
manage the irrigation, to define the best moment to act and the 
right quantity of water to use.  

Italy/ 
International 

[128] 

Agricultural 
robots 

The French startup Naïo Technologies is using Galileo to develop 
autonomous robots that can perform a variety of agricultural 
tasks, such as weeding, harvesting, and crop monitoring. The 
robots use sensors and machine learning algorithms to navigate 
fields and make decisions on crop management 

France [129] 
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Name Description Location Source 

AgroClim by 
Promété 

Offers a range of 30 OADs against diseases or pests in viticulture, 
arboriculture, market gardening or field crops. From the 
application, estimate the level of protection of your plot and the 
ideal time to re-intervene thanks to the spraying windows 

France 
[130] 

 

Agroptima 
A software program that offers modules for crop management, 
livestock management, and financial management 

France/ 
International 

[131] 

Agroptimize 
A cloud-based software that allows farmers to manage their farm 
data, including crop management, precision farming, and livestock 
management 

Belgium [132] 

AgroStart 
A software suite that includes tools for crop management, 
inventory management, and financial management 

BASF France 
division  

[133] 

Bouquet 
Farmlife 

Animal collars to monitor all their life cycle France [134] 

Climate 
FieldView 

A software program that provides tools for crop management, 
field mapping, and yield analysis. by the Climate Corporation 

France/ 
International 

[135] 

Corhize 
A suite of tools to help keep a global vision on the water 
management of a parcel, a farm or a territory, and in particular the 
support to irrigation 

France [136] 

Decitrait 
Decision Support Tool (DST) that allows to follow the level of 
infection of diseases (downy mildew and powdery mildew) on 
vineyard plots 

France [137] 

Ekylibre 
A software platform that provides tools for crop management, 
field mapping, and financial management 

France [138] 

Farmi 
Application that offers agronomic support, and agroeconomic 
tools by Avizio and Crop Observer: 

Switzerland [139] 

FarmWorks 
A software suite that includes modules for crop management, 
livestock management, and financial management. 

France/ 
international 

[140] 

Flexio Connected greenhouse France [141] 

Irré-Lis 
Allows to calculate in real time the state of the water reserve of 
the soil and the forecasted dates of the stages which impact on 
the sensitivity to the hydric stress of the crop 

France [142] 

Irribet Indicates when irrigation is necessary for sugar beet crops France [143] 

Mileos Daily anti-mildew tool for potatoes  France [144] 

Move and 
Connect 

connected sensors stream data around the world for smart 
farming France [145] 

Movida 
Risk assessment of mildew and powdery mildew in vineyard France/ 

International 
[146] 

MyEasyFarm 
software platform that offers tools for crop management, field 
mapping, and yield analysis. 

France [147] 

Next Farming 
by FarmFacts 

A software program that includes modules for crop management, 
livestock management, and field mapping Germany [148] 

Rimpro 
DST for the management of pests and diseases in fruit and wine 
crops 

France [149] 

ruitweb 
Offers many forecasting models for diseases and pests, which are 
important in fruit growing (e.g. scab, hoplocampus, fire blight, 
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Name Description Location Source 

codling moth, sooty mould disease, etc.). They offer two different 
weather forecast models (yr.no, meteoblue)), 

Scan Bean Sclerotinia risk assessment on beans France [150] 

Sencrop 
The French company Sencrop is using weather data from EGNOS 
and other sources to develop a platform that provides farmers 
with real-time information on weather conditions.  

France/ 
International 

[151] 

Sensing Labs 

Provides sensors and software for monitoring environmental 
conditions in agricultural settings. The platform collects data on 
temperature, humidity, soil moisture, and other factors, which can 
be used to optimize crop growth and yield. 

France [152] 

SpaceSense 

Provides farmers with information on soil moisture, temperature, 
and other variables. The platform can be used to optimize 
irrigation and improve crop yields, as well as to monitor the impact 
of climate change on agricultural production 

France [153] 

SynField/ 
SynAir 

Synelixis offers a complete HW/SW/cloud platform, which may 
monitors more than 30 different parameters on air, soil, leaf and 
water, combines weather data from local meteorological stations 
and 3rd party sources and offers irrigation advice, spraying advice, 
air and water quality monitoring, remote control of irrigation and 
farm automation. 

Greece/ 
Italy/ 
International 

[154] 

VigiMAP Tool for the control of potato blight at plot level Belgium [155] 

VitiMeteo Follow the evolution of the main vine diseases Germany [156] 

Wago by 
Terranis 

Based on a water balance model developed in the framework of 
research projects, Wago calculates the daily water reserve of the 
soil from plot data, meteorological data (rainfall) and satellite 
images that update the water balance according to the real 
development of crops throughout the season 

France [157] 

Weenat 
Connected meteorological sensors and high-precision agronomy 
devices for agricultural professionals  

France/ 
International 

[158] 

Xarvio Field 
Manager 

Decision Support Tool (DST) that allows to monitor wheat, barley 
and oilseed rape crops with predictive models of stages, diseases 
and pests, as well as satellite image analysis. 

France 
[159] 

 

Yara CheckIT 
A software platform that provides tools for crop monitoring, 
nutrient management, and yield analysis 

France [160] 

5.5 Publications, contributions, and trends in Europe 

In order to study publications related to smart farming and precision agriculture, a corpora search was performed 

using the SCOPUS database. The query TITLE-ABS-KEY (“smart farming”) AND TITLE-ABS-KEY (“precision 

agriculture”) yielded 506 documents. As can be seen in Figure 47, the first publication dates to 2015. Most 

probably, this link relates to the ratification of the UN Sustainable Development Goals agenda, where the need 

for paradigm shifts in agriculture was stressed. Since 2015, a steady increase in publications’ number can be seen 

with a clear peak in 2022. Despite the increase, the number of publications is still relatively low with only 125 

publications of smart farming and precision agriculture. This could be due to the relatively recent nature of these 
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disciplines but also to its limited extent and adoption. Accordingly, significant research efforts are still needed for 

this emerging discipline.  

 
Figure 47: “Smart Farming” and “Precision Farming” publications at SCOPUS Database 

In terms of contributions, a detailed analysis per country was performed. A non-EU aggregated analysis reveals 

that India is leading in terms of publications on smart agriculture and smart farming with 115 documents, followed 

by Italy with 33, Greece with 23, Spain with 22, Germany with 17 and France with 11 (Figure 48). When EU counties 

are aggregated, the ranking changes to 151 documents by the EU followed by 115 for India (Figure 49).  

The presented curves rather show that publications on smart farming and precision agriculture are somehow 

restricted to particular geographies with Europe leading on the subject. In this vein, the European Commissions 

(EC)’ Horizon, H2020 and FP7 programmes were found to be the leading funding parties for most studies. Under 

this context, the following precision agriculture and smart farming projects from the EC’s programmes were found 

(Table 10) though a more detailed list of more than 520 past projects in smart farming are available at the following 

Link. 

 

 

 

 

https://ictagrifood.eu/project-mapping
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Figure 48: Studies on Smart Farming and Precision Farming (non-EU aggregated analysis) 

 
Figure 49: Studies on Smart Farming and Precision Farming (EU aggregated analysis) 
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A detailed analysis by country, after being mapped and extracted from the affiliations listed in the publications 

revealed the following distribution: 3 institutions in Africa, 7 in South America and the Middle East, 12 in North 

America, 19 in the Far East, 39 in South Asia and 52 in Europe. Within AgriDataValue and using the google maps 

tool, we have created the following interactive map, which can be accessed at [161]:  

 
Figure 50: AgriDataValue Interactive map with detailed publications on smart farming. Link 

As can be seen, except for Morocco and Madagascar, Africa relatively lacks any smart farming activities or 

publications. This disparity in smart farming publications may be related to differences in technology levels, access 

to data and technology, and a general knowledge of the topic. While an evolving topic, geographical gradients 

reveal a heterogenous distribution, hence underlining the need for more cross-collaborations and cross-

geographical efforts.  

 

Table 10 provides an indicative list of projects funded by the European Commission in smart farming presenting 

also the smart farming technologies, such as UAVs, UGVs, WSN, image processing, cloud computing and machine 

learning that have been utilised. A more detailed list of more than 520 past projects in smart farming are available 

at the following Link. 

https://www.google.com/maps/d/u/1/edit?mid=1mEWoQCuoiGY65_ZbwQolq00dJ08mi9E&usp=sharing
https://ictagrifood.eu/project-mapping


HORIZON Research and Innovation Actions - 101086461: AgriDataValue 

Deliverable D1.1: Definition & analysis of use cases and system requirements V1 

 

Page 107 of 224 

Table 10: An indicative list of projects targeting Smart Farming 

Project Start/ End 
Involved 

Technologies 

Crop Field Operations 
Program Coord Webpage 

4D4F (Data Driven Dairy 
Decisions 4 Farmers) 

1-Mar-16/ 
28-Feb-19 

   H2020-EU.3.2. - Food 
security, sustainable 
agriculture and forestry, 
marine, maritime and 
inland water research, 
and the bioeconomy 

INNOVATION 
FOR 
AGRICULTURE, 
UK 

Link 

BRIGHTANIMAL 
(Multidisciplinary Approach 
to Practical and Acceptable 
Precision Livestock Farming 
for SMEs in Europe and 
world-wide) 

1-May-09/ 
30-Apr-11 

   
FP7-KBBE - Specific 
Programme 
"Cooperation": Food, 
Agriculture and 
Biotechnology 

FOODREG 
TECHNOLOGY SL, 
Spain 

Link 

CATTLECHAIN 4.0 
Enhancing farm productivity 
and guaranteeing CATTLE 
traceability and welfare 
with blockCHAIN 

1-Apr-19/ 
31-Mar-22 

   

H2020-EU2.1. - Industrial 
leadership - Leadership 
in enablig and industrial 
technologies 

MANAGEMENT, 
CONSTRUCTION 
AND TRADE, 
INNOVATIVE 
SOLUTIONS 
INTERNATIONAL 
SL, Spain 

Link 

DRAGON  
Data Driven Precision 
Agriculture Services and 
Skill Acquisition 

1-Oct-18/ 
31-Jan-22 

   
H2020-EU.4.b. - 
Twinning of research 
institutions 

BIOSENSE, Serbia Link 

ECHORD Plus Plus 
(European Clearing House 
for Open Robotics 
Development Plus Plus) 

1-Oct-13/ 
30-Sep-18 

Cloud Computing 
Image Processing 
Machine Learning 

UAV 
UGV 

Asparagus 
Corn 

Cucumber 
Eggplant 
Melons 
Peppers 

Sugar Beet 
Tomatoes 
Vineyard 

Crop Monitoring 
Grafting 

Harvesting 
Pruning 
Seeding 
Spraying 

Weed Management 

FP7-ENVIRONMENT 

Technische 
Universität 
München,  
Germany 

Link 

https://cordis.europa.eu/project/id/696367
https://cordis.europa.eu/project/id/227138
https://cordis.europa.eu/project/id/853864
https://cordis.europa.eu/project/id/810775
https://echord.eu/
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Project Start/ End 
Involved 

Technologies 

Crop Field Operations 
Program Coord Webpage 

Watermelons 

ENORASIS  
(ENvironmental 
Optimization of IRrigAtion 
anagement with the 
Combined uSe and 
Integration of High PrecisIon 
Satellite Data) 

01-Jan-12/ 
31-Dec-14 

WSN 

Apple Trees 
Cherry Trees 

Corn 
Cotton 

Grapefruit 
Maize 

Potatoes 
Raspberry 

Water Management FP7-ENVIRONMENT 
Draxis 
Environmental 
S.A., Greece 

Link 

ERMES  
(An Earth obseRvation 
Model based RicE 
information Service), 

5-Sept-13/ 
28-Feb-17 

Big Data 
Cloud Computing 

UAV 
WSN 

Rice Crop Monitoring FP7-SPACE CNR – IREA, Italy Link 

FIGARO (Flexible and 

PrecIse IrriGation PlAtform 

to Improve FaRm Scale 

Water PrOductivity), 

1-Oct-12/ 
30-Sept-16 

WSN – Water Management 

FP7- KBBE.2012.1.1-03 - 
Precision technologies to 
improve irrigation 
management and 
increase water 
productivity in major 
water-demanding crops 
in Europe 

NETAFIM LTD, 
Israel 

Link 

FLEXIGROBOTS  
(Flexible robots for 
intelligent automation of 
precision agriculture 
operations) 

1-Jan-21/ 
31-Dec-23 

Big Data 
Cloud Computing 
Image Processing 

AI/ML 
UAV 
UGV 

 
Blueberry 
Vineyards 

Rumex Weed 

Crop Monitoring 
Spraying 

Weed Management 
Harvesting 

Disease Detection 
 

H2020-EU.2.1.1. - 
Leadership in enabling 
and industrial 
technologies - ICT  

ATOS IT 
SOLUTIONS AND 
SERVICES IBERIA 
SL, Spain 

Link 

Flourish (Aerial Data 
Collection and Analysis, and 
Automated Ground 
Intervention for Precision 
Farming) 

1-Mar-15/  
31-Aug-18 

Image Processing 

UAV 

UGV 

Sugar Beet 

Sunflower 

Crop Monitoring 

Spraying 

H2020-EU.2.1.1.5. - 
Advanced interfaces and 
robots: Robotics and 
smart spaces 

EIDGENOESSISCH
E TECHNISCHE 
HOCHSCHULE 
ZUERICH, 
Switzerland 

Link 

https://cordis.europa.eu/project/id/282949
http://www.ermes-fp7space.eu/en/homepage/
https://cordis.europa.eu/project/id/311903
https://cordis.europa.eu/project/id/101017111
https://cordis.europa.eu/project/id/644227
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Project Start/ End 
Involved 

Technologies 

Crop Field Operations 
Program Coord Webpage 

FRACTALS  
(Future Internet Enabled 
Agricultural Applications) 

1-Dec-14/ 
31-Aug-16 

WSN 
Future Internet 

Olive Trees 
Crop Monitoring 

Disease Detection 
Fertilization 

FP7-FI- ICT-2013.1.8 - 
Expansion of Use Cases 

RAZVOJNI FOND 
AUTONOMNE 
POKRAJINE 
VOJVODINE 
D.O.O., Serbia 

Link 

GATES (Applying GAming 
TEchnologies for training 
professionals in Smart 
Farming) 

1-Jan-17/ 
30-Jun-19 

Machine Learning – Educational 

H2020-EU.2.1.1. - - 
Leadership in enabling 
and industrial 
technologies 

GEOPONIKO 
PANEPISTIMION 
ATHINON, 
Greece 

Link 

Healthy Livestock 
Tackling Antimicrobial 
Resistance through 
improved livestock Health 
and Welfare 

1-Sep-18/ 
28-Feb-23 

Machine Learning   

H2020-EU.3.2.1.1. - 
Increasing production 
efficiency and coping 
with climate change, 
while ensuring 
sustainability and 
resilience  

STICHTING 
WAGENINGEN 
RESEARCH, 
Netherlands 

Link 

LANDSUPPORT 
(Development of Integrated 
Web-Based Land Decision 
Support System Aiming 
Towards the 
Implementation of Policies 
for Agriculture and 
Environment) 

1-May-18/ 
30-Apr-22 

Cloud Computing   

H2020-EU.3.2.1.3. - 
Empowerment of rural 
areas, support to policies 
and rural innovation 

UNIVERSITA 
DEGLI STUDI DI 
NAPOLI 
FEDERICO II, Italy 

Link 

MISTRALE  
(Monitoring of SoIl moiSture 
and wateR-flooded Areas 
for agricuLture and 
Environment) 

01-Jan-15/ 
31-Dec-17 

Image Processing 
UAV 

Potatoes 
Vineyard 

Crop Monitoring 
Water Management 

H2020- EU2.1.6- 
Leadership in enabling 
and industrial 
technologies – Space 

M3 SYSTEMS. 
Belgium 

Link 

PANTHEON  
Precision Farming of 
Hazelnut Orchards 

1-Nov-17/ 
31-Oct-21 

Big Data 

UAV, UGV 

WSN 

Hazelnuts 
Crop Monitoring 

Water Management 

H2020-EU.2.1.1. 
Leadership in enabling 
and industrial 
technologies - ICT 

UNIVERSITA 
DEGLI STUDI 
ROMA TRE, Italy 

Link 

https://cordis.europa.eu/project/id/632874
https://cordis.europa.eu/project/id/732358
https://cordis.europa.eu/project/id/773436
https://cordis.europa.eu/project/id/774234
https://www.mistrale.eu/
https://cordis.europa.eu/article/id/435494-a-tough-nut-to-crack-personalised-care-for-individual-trees
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Project Start/ End 
Involved 

Technologies 

Crop Field Operations 
Program Coord Webpage 

ROMI  
RObotics for MIcrofarms 

1-Nov-17/ 
31-Jul-22 

UAV 

UGV 
– 

Crop Monitoring 

Weed Management 

H2020-EU.2.1.1. - 
Leadership in enabling 
and industrial 
technologies - ICT  

INSTITUT 
D'ARQUITECTUR
A AVANCADA DE 
CATALUNYA, 
Spain 

Link 

SmartAgriFood2 
(Smart Food and 
Agribusiness: Future 
Internet for Safe and 
Healthy Food from Farm to 
Fork) 

1-Jun-14/ 

30-Sep-16 
WSN 

Future Internet 
Various KMS FP7-ICT ICT-2013.1.8 - 

Expansion of Use Cases 

STICHTING 
WAGENINGEN 
RESEARCH. 
Netherlands 

Link 

Smart-AKIS (European 
Agricultural Knowledge and 
Innovation Systems towards 
innovation-driven research 
in Smart Farming 
Technology) 

1-Mar-16/ 
31-Aug-18 

Cloud Computing  KMS 

H2020-EU.3.2. - 
SOCIETAL CHALLENGES - 
Food security, 
sustainable agriculture 
and forestry, marine, 
maritime and inland 
water research, and the 
bioeconomy 

GEOPONIKO 
PANEPISTIMION 
ATHINON, 
Greece 

Link 

SMARTER  
SMAll RuminanTs breeding 
for Efficiency and Resilience 

1-Nov-18/ 
31-Oct-22 

Cloud Computing   

H2020-EU.3.2.1.1. - 
Increasing production 
efficiency and coping 
with climate change, 
while ensuring 
sustainability and 
resilience 

INRAE, France Link 

SWEEPER (Sweet Pepper 
Harvesting Robot) 

1-Feb-15/ 
31-Oct-18 

Image Processing 

UGV 
Peppers Harvesting 

H2020-EU.2.1.1.5. - 
Advanced interfaces and 
robots: Robotics and 
smart spaces 

STICHTING 
WAGENINGEN 
RESEARCH, 
Netherlands 

Link 

TEKNOAX 2.0 (Bringing 
Intelligence onto Axles of 

1-Jan-17/ 
31-Dec-18 

WSN 
Cloud Computing 

 Farm Management 
H2020-EU.2. - PRIORITY 
'Industrial leadership' 

A.D.R. S.P.A., 
Italy 

Link 

https://cordis.europa.eu/project/id/773875
https://www.foodie-project.eu/
https://cordis.europa.eu/project/id/696294
https://cordis.europa.eu/project/id/772787
https://cordis.europa.eu/project/id/644313
https://cordis.europa.eu/project/id/737848
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Project Start/ End 
Involved 

Technologies 

Crop Field Operations 
Program Coord Webpage 

Third Millennium Farming 
Trailers) 

ULTRAFINEWINE (Novel 
method for assisting and 
accelerating the aging 
process of wine) 

1-Dec-10/ 
30-Nov-12 

WSN Vineyard 
Crop Monitoring 

Harvesting 
FP7-SME 

IRIS 
TECHNOLOGY 
SOLUTIONS, 
Spain 

Link 

VINBOT  
(Autonomous Cloud-
Computing Vineyard Robot 
to Optimize Yield 
Management and Wine 
Quality) 

01-Feb-14/ 
31-Jan-17 

Could Computing Vineyard 
Crop Monitoring 
Yield Prediction 

FP7-SME 
ROBOTNIK 
AUTOMATION 
SL, Spain 

Link 

VINEROBOT  
(VINEyard ROBOT. A 
wheeled robot to monitor 
grape growth) 

1-Dec-13/ 
31-May-17 

Image Processing 
Machine Learning 

UGV 
Vineyard 

Crop Monitoring 
Disease Detection 

Water Management 
FP7-ICT 

UNIVERSIDAD DE 
LA RIOJA, Spain 

Link 

WATER-BEE (Low cost, easy 
to use Intelligent Irrigation 
Scheduling System) 

1-Oct-08/ 
30-Sep-10 

WSN – Water Management 

FP7-SME - Specific 
Programme "Capacities": 
Research for the benefit 
of SMEs 

OSV SRL, Italy Link 

 

https://cordis.europa.eu/project/id/262614
https://cordis.europa.eu/project/id/605630
https://www.vinerobot.eu/
https://cordis.europa.eu/project/id/222440
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5.5.1 Research Efforts on smart farming in Europe  
This sub-section presents the research efforts European countries conducted on smart farming. Figure 51 shows 

the different European countries involved in smart farming research effort between 2008-2020. Spain and Italy 

are leading these efforts, in numbers of scientific articles published on smart farming, followed by Germany and 

Greece. Figure 52 illustrates that, in Europe, most scientific publications about smart farming focus on crop 

monitoring, followed by water and weed management. Figure 53 indicates that image processing and UAV are the 

most research technologies in Europe when it comes to smart farming. 

 
Figure 51. Research efforts conducted by European countries [113] 

 
Figure 52. Number of scientific publications across different types of field operations 
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Figure 53. Number of scientific publications across involved technologies in European research efforts 

The tables below offer references of scientific publications related to smart farming in Europe. More specifically, 

Table 34 offers the references for involved technologies in European research efforts, Table 35  lists the references 

of scientific publication across European countries (where the research took place), Table 36 gives references of 

scientific publications across the types of crops used in European research efforts, and Table 37 offers references 

for scientific publications across the different field of operations in European research efforts. 

5.6 Analysis of existing methods 

Currently different types of methodologies and techniques exist to monitor impacts of climate change on crops 

and livestock, provide accurate information in real time to growers. These methods have been used to improve 

the farms operation, by turning on early warning system or adopting the more adequate measures to protect their 

crops and livestock. The adoption of robotic techniques, such as the Internet of Things, Big Data analysis, artificial 

intelligence, cloud computing and remote sensing are part of the recent agricultural era, the smart farming. In this 

section, some of these techniques to evaluate, adapt and monitor impacts of climate (and climate change) on 

crops and livestock will be exposed. 

5.6.1 Earth Observation Services 
Information of vegetation or soil conditions can be collected from satellites, aircrafts, and other aerial vehicles like 

drones. According to the UK Space Agency [162], earth observation (EO) is the gathering of information about the 

physical, chemical, and biological systems of the planet via remote-sensing technologies, supplemented by Earth-

surveying techniques, which encompasses the collection, analysis, and presentation of data. EO data is widely 

used to map agricultural patterns or monitor land use and land cover, identify when crops were planted and how 

they are developing, estimate crop irrigation, soil properties, crop–livestock systems, etc. [163]. Moreover, the 

impact of climate change on agriculture can be predicted, by the identification of seasonal variation of 

precipitation, droughts, harvests, and potential crop damage such as the arrival of swarms of locusts [164]. This is 

very useful to adopt solutions that ensuring sustainable agricultural practices. Data related to climate (and climate 

change) from EO technologies are of big interest for farmers in areas, where ground information are not available 

or limited.  

5.6.1.1 Sentinel Hub  
Sentinel Hub provides unprecedented access to earth observation data, focused on Copernicus satellites but also 

supporting other sources such as Landsat, Modis, and others. It uses cloud infrastructure and innovative methods 

to efficiently process and distribute data in a matter of seconds. It can be integrated into any mapping application 
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for web application allowing for an easy-to-use and cost-effective way to exploit the data. It removes the major 

hassle of downloading, archiving, and processing petabytes of data and simply makes the full and global archive 

easily available immediately via web services. Application developers can focus on added value services and end-

user applications rather than having to deal with the complexity of remote sensing data. Sentinel Hub technology 

is designed to work with original EO data, avoiding the need for computing intensive pre-processing and additional 

storage for processed tiles. 

 
 Figure 54: Concept diagram of Sentinel Hub services 

The Sentinel Hub Open Geospatial Consortium (OGC) API supports:  

o Web Map Service (WMS) for seamless integration in GIS applications 

o Web Map Tile Service (WMTS) provides access to Sentinel-2's 13 unprocessed bands and other 

processed data 

o Web Coverage Service (WCS) for provision of exact EO data, best used when integrated in application 

developers' post-processing workflows; giving developers an ability to specify exactly, what kind of data 

they require (resolution, reflectance, etc.); 

o Web Feature Services (WFS) for meta-data provision (Catalogue access) 

Standard OGC service interfaces are extended to support additional EO parameters, such as maximum cloud 

coverage, mosaicking order, composites, etc. 

5.6.1.2 Real-time processing of EO data.  
Sentinel Hub OGC API is optimized for on-demand on-the-fly processing of raw (unchanged) EO data. The following 

steps are typically performed within a standard request: 

1. Query Catalogue for chosen AOI, time range, cloud coverage, mission, etc. 

2. Download necessary data from on-line storage 

3. Decompress data 

4. Application of pre-mosaic filters (e.g. DOS-1, statistical atmospheric correction, etc.) 

5. Creation of mosaic based on priority (e.g. most recent data on top), cloud replacement, etc. 
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6. Compositing relevant bands to chosen EO product (true color, false color, NDVI, etc.) using chosen style 
(greyscale, RGB, red temperature, etc.) 

7. Application of post-mosaic filters (color balance, HDR, midtone, gamma correction) 

8. Re-projection to chosen CRS (e.g. Popular Web Mercator, WGS 84, national CRS systems). 

9. Output creation in chosen file type (JPG, PNG, JP2, JPX, GeoTiff, etc.) 

10. Compression of the output for faster download, based user settings   

5.6.1.3 Configuration utility 
Every registered user can add as many unique-named instances as he/she chooses. An instance acts as a separate 

WMS/WMTS/WFS/WCS service and each can be configured to provide a certain set of layers with different 

settings. It is therefore possible to create multiple instances each with a different set of layers fulfilling various 

needs. Instances may contain an arbitrary number of layers. Each layer is associated with either one of the raw 

sensor bands or the products (such as TRUE_COLOR) and product styles. Layers are also additionally configurable 

using the settings defined above, such as MAXCC, TIME, the max area limitation, etc. The instance itself also has 

some global settings for default values on all layers, like image quality. 

5.6.1.4 EO data 
Characteristics of Earth observation data from various satellites are categorized in the following table. 

Table 11: Earth observation data categorization 

Data collection Availability - 

Spatial 

Availability - Temporal Revisit 

Sentinel-2 L1C Whole world November 2015 ￫ 5 days 

Sentinel-2 L2A Whole world January 2017 ￫ 3-5 days 

Sentinel -1 Whole world For eo-cloud: October 2014 ￫ 

For services: January 2017 ￫ 

6-12 days 

Sentinel-3 OLCI L1B Land and coastal 
areas where solar 
zenith angle <80 
degrees 

April 2016 ￫ < 2 days 

Sentinel-3 SLSTR L1B Land and coastal 
areas where solar 
zenith angle <80 
degrees 

May 2016 ￫ < 0.9 days 

Sentinel 5P L2 Whole world April 2018 ￫ daily 

Landsat 1-5 MSS Collection 
2 Level 1 Data  

Global land LS1: July 1972 ￫ January 1978 

LS2: January 1975 ￫February 1982 

LS3: March 1978 ￫ March 1983 

LS4: July 1982 ￫ December 1993 

LS 5: 1984 ￫ October 1992, and from 

June 2012 ￫ January 2013 

July 1972 ￫ October 1992,  

June 2012 ￫ January 2013 

various 

(16 – 18 days) 

https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l1c/
https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/
https://docs.sentinel-hub.com/api/latest/data/sentinel-1-grd/
https://docs.sentinel-hub.com/api/latest/data/sentinel-3-olci-l1b/
https://docs.sentinel-hub.com/api/latest/data/sentinel-3-slstr-l1b/
https://docs.sentinel-hub.com/api/latest/data/sentinel-5p-l2/
https://collections.sentinel-hub.com/landsat-1-5-mss-l1
https://collections.sentinel-hub.com/landsat-1-5-mss-l1
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Landsat 4-5 TM Collection 2 
Level 1 Data 

Global land LS4: July 1982 ￫ December 1993 

LS5: March 1984 ￫ May 2012 

16 days 

Landsat 4-5 TM Collection 2 
Level 2 Data 

Global land LS4: July 1982 ￫ December 1993 

LS5: March 1984 ￫ May 2012 

16 days 

Landsat 7 ETM+ Collection 
2 Level 1 Data 

Global land April 1999 ￫ 16 days 

Landsat 7 ETM+ Collection 
2 Level 2 Data 

Global land April 1999 ￫ 16 days 

Landsat 8-9 OLI-TIRS 
Collection 2 Level 1 Data 

Land February 2013 ￫ 16 days 

Landsat 8-9 OLI-TIRS 
Collection 2 Level 2 Data 

Land February 2013 ￫ 16 days 

Envisat Meris Whole world from June 2002 to April 2012 3 days 

Digital Elevation Model 
(DEM) 

Whole world Static / 

Copernicus DEM 90 Whole world Static / 

Copernicus DEM 30 Whole world Static / 

MODIS Whole world 24 February 2000 ￫ daily 

Commercial Data – 
PlanetScope 

Whole world 2009 ￫ daily 

Commercial Data – Pleiades Whole world December 2011 ￫ on-demand 
acquisitions 

Commercial Data – Spot Whole world September 2012 ￫ on-demand 
acquisitions 

Commercial Data – 
WorldView (+GeoEye) 

Whole world 2009 ￫ on-demand 
acquisitions, 
archive 

All above EO data is accessible through Sentinel-Hub services. There are several options to get the data: 

• EO Browser [165] for quick and fast checks what data is available where. 

• Sentinelhub-py [166] and EO-learn [167] for programmatic access with Python. 

• Other approaches (integrations with different applications) as documented on Sentinel-Hub [168]. 

Examples and documentation for access with Python libraries are available on sentinelhub-py documentation 

[169] and eo-learn documentation [170]. 

5.6.1.5 Copernicus Sentinel-1 
Copernicus Sentinel-1 [171] imagery is provided by two polar-orbiting satellites, operating day and night 

performing C-band synthetic aperture radar imaging, enabling them to acquire imagery regardless of the weather. 

Main applications are for monitoring sea ice, oil spills, marine winds, waves and currents, land-use change, land 

deformation among others, and to respond to emergencies such as floods and earthquakes. 

https://collections.sentinel-hub.com/landsat-4-5-tm-l1/
https://collections.sentinel-hub.com/landsat-4-5-tm-l1/
https://collections.sentinel-hub.com/landsat-4-5-tm-l2/
https://collections.sentinel-hub.com/landsat-4-5-tm-l2/
https://collections.sentinel-hub.com/landsat-7-etm+-l1/
https://collections.sentinel-hub.com/landsat-7-etm+-l1/
https://collections.sentinel-hub.com/landsat-7-etm+-l2/
https://collections.sentinel-hub.com/landsat-7-etm+-l2/
https://collections.sentinel-hub.com/landsat-8-l1/
https://collections.sentinel-hub.com/landsat-8-l1/
https://collections.sentinel-hub.com/landsat-8-l2/
https://collections.sentinel-hub.com/landsat-8-l2/
https://collections.sentinel-hub.com/envisat-meris/
https://docs.sentinel-hub.com/api/latest/data/dem/
https://docs.sentinel-hub.com/api/latest/data/dem/
https://docs.sentinel-hub.com/api/latest/data/dem/
https://docs.sentinel-hub.com/api/latest/data/dem/
https://docs.sentinel-hub.com/api/latest/data/modis/mcd/
https://docs.sentinel-hub.com/api/latest/data/planet-scope/
https://docs.sentinel-hub.com/api/latest/data/planet-scope/
https://docs.sentinel-hub.com/api/latest/data/airbus/pleiades/
https://docs.sentinel-hub.com/api/latest/data/airbus/spot/
https://docs.sentinel-hub.com/api/latest/data/maxar/world-view/
https://docs.sentinel-hub.com/api/latest/data/maxar/world-view/
https://apps.sentinel-hub.com/eo-browser
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Table 12: Copernicus Sentinel-1 Endpoints Locations 

Service Notes 

services.sentinel-hub.com/api/ Global since January 2017 

eocloud.sentinel-hub.com/v1/ Global since October 2014 

shservices.mundiwebservices.com/api/ Rolling policy: 48 months for Europe, 12 months for World 

5.6.1.6 Copernicus Sentinel-2 
Copernicus Sentinel-2 [172] is a European wide-swath, high-resolution, multi-spectral imaging mission. Its high-
resolution optical images have many applications, including land monitoring, emergency response and security 
services assistance. The satellite’s multispectral imager provides a versatile set of 13 spectral bands spanning from 
the visible and near infrared to the shortwave infrared. 

Table 13: Copernicus Sentinel-2 Basic facts – Sentinel-2L1C 

Property Info 

Spatial resolution 10 m, 20 m, and 60 m depending on the wavelength 

Sensor MultiSpectral Instrument (MSI), 13 bands: 4 visible bands, 6 Near-Infrared bands, 
and 3 Short-Wave Infrared bands 

Revisit time 5 days with two satellites 

Spatial coverage Land and coastal areas between latitudes 56°S and 83°N 

Data availability Since November 2015 

Measurement Top of the atmosphere (TOA) reflectance 

Common usage/purpose Land-cover maps, land-change detection maps, vegetation monitoring, 
monitoring of burned areas 

Common usage/purpose Land-cover maps, land-change detection maps, vegetation monitoring, 
monitoring of burned areas 

Level 2A [173] is processed using Sen2Cor as provided by ESA. To access the data, you need to send a POST request 

to the process API. The requested data will be returned as the response to your request. Each POST request can 

be tailored to get exactly the data required. This requires setting various parameters which depend on the data 

source being queried. For an overview of all API parameters see the API Reference [174]. Additional information, 

descriptions on available bands, search functionalities, filtering, mosaicking, examples and other capabilities can 

be found at [175] [176].  

Table 14: Copernicus Sentinel-2 Endpoint Locations Sentinel-2 Data 

Type  Services Endpoint Notes 

L1C 

services.sentinel-hub.com/api/ Global since November 2015 

eocloud.sentinel-hub.com/v1/ Global since November 2015 

creodias.sentinel-hub.com/api/ Global since November 2015 

code-de.sentinel-hub.com/api/ Germany since July 2015 

shservices.mundiwebservices.com/api/ Europe coverage since July 2015 
Rolling policy of 12 months for World 

L2A 
services.sentinel-hub.com/ Europe since November 2016 

Global since January 2017 

shservices.mundiwebservices.com/ Europe since July 2016 
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5.6.1.7 Copernicus Sentinel-3 
Copernicus Sentinel-3 [177] is a European wide-swath, medium-resolution, multi-spectral imaging mission 

designed to monitor ocean surface topography as well as land and sea surface temperature. The satellite hosts 4 

instruments: the Sea and Land Surface Temperature Radiometer (SLSTR), the Ocean and Land Colour Instrument 

(OLCI), a Sar Radar Altimeter (SRAL) and a Microwave Radiometer (MWR). Sentinel-3A was launched on 16 

February 2016 and its twin Sentinel-3B on 25 April 2018. Sentinel Hub currently provides access to OLCI and SLSTR 

data collections. 

Table 15: Copernicus Sentinel-3 Basic facts for Sentinel-3 OLCI 

Property Info 

Spatial resolution ~300 m 

Sensor Ocean and Land Colour Instrument (OLCI), 21 bands: 16 visible bands, 5 Near-
Infrared bands 

Units Radiance (mW.m-2.sr-1.nm-1). Note that Sentinel Hub returns reflectance. 

Revisit time < 2 days with 2 satellites 

Spatial coverage Land and coastal areas where the solar zenith angle < 80º 

Data availability Since April 2016 

Measurement Top of the atmosphere (TOA) radiance 

Common usage/purpose Maritime, land, atmospheric and climate change monitoring 

Table 16: Copernicus Sentinel-3 Basic facts for Sentinel-3 SLSTR 

Property Info 

Spatial resolution ~500 m or 1km 

Sensor Sea and Land Surface Temperature Radiometer (SLSTR), 11 bands: 3 VNIR 
bands, 3 SWIR bands, 5 thermal IR bands. 

Units Radiance: mW.m-2.sr-1.nm-1 (Note that Sentinel Hub returns reflectance) 
Brightness temperature: K. 

Revisit time < 0.9 days with 2 satellites 

Spatial coverage Land and coastal areas where the solar zenith angle < 80º 

Data availability Since May 2016 

Measurement Top of the atmosphere (TOA) radiance 

Common usage/purpose Climate change monitoring, vegetation monitoring, active fire detection, land 
and sea surface temperature monitoring. 

5.6.1.8 Copernicus Sentinel 5P 
Sentinel Hub supports Sentinel-5P [178] level 2 (L2) data products as provided by ESA. Raw bands (Level 1 

products) are not available in Sentinel Hub. The Sentinel-5P (P for precursor) mission aims at providing information 

and services on air quality and climate between 2017 and at least 2023. With the TROPOMI sensor on board it 

makes daily global observations of key atmospheric constituents, including ozone, nitrogen dioxide, sulphur 

dioxide, carbon monoxide, methane, formaldehyde as well as cloud and aerosol properties. The mission aims at 

ensuring data continuity between the retirement of the Envisat satellite and NASA's Aura mission and the launch 

of Sentinel-5 [179] 
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Table 17: Basic facts Sentinel 5P 

Property Info 

Spatial resolution Up to 5.5 km x 3.5 km [180] 

Sensor Tropospheric Monitoring Instrument (TROPOMI), a spectrometer measuring 
ultraviolet and visible (270–495 nm), near infrared (675–775 nm) and 
shortwave infrared (2305–2385 nm) light. 

Revisit time Less than one day. 

Spatial coverage Global coverage. 

Data availability Since April 2018. 

Common usage/purpose To provide global information on a multitude of atmospheric trace gases, 
aerosols and cloud distributions affecting air quality and climate. 

5.6.1.9 Landsat 1-5 MSS L1 
The Landsat Multispectral Scanner System (MSS) sensors were carried onboard Landsats 1 to 5. It provides 4 

spectral bands.  

Table 18: Basic facts Landsat 1-5 MSS L1 

Property Info 

Spatial resolution 68 m x 83 m (commonly resampled to 57 m, or 60 m) 

Sensor Multispectral Scanner System (MSS) with 4 spectral bands 

Revisit time 18 days for Landsats 1-3 and 16 days for Landsat 4-5 

Spatial coverage Whole globe 

Data availability 

Landsat 1: July 1972 ￫ January 1978 

Landsat 2: January 1975 ￫February 1982 

Landsat 3: March 1978 ￫ March 1983 

Landsat 4: July 1982 ￫ December 1993 

Landsat 5: 1984 ￫ October 1992, and from June 2012 ￫ January 2013 

Common usage/purpose Vegetation monitoring, land use, land cover maps and monitoring of 
changes. 

5.6.1.10 Landsat 4-5 TM 
The Landsat Thematic Mapper (TM) sensor was carried onboard Landsats 4 and 5. It provides 6 spectral bands and 

1 thermal infrared band. Both Level 1 and Level 2 data are available.  

Table 19: Basic facts Landsat 4-5 TM 

Property Info 

Spatial resolution 30 m (the thermal band is re-sampled from 120 m) 

Sensor Thematic Mapper (TM) with 6 spectral bands and 1 thermal infrared band 

Revisit time 16 days 

Spatial coverage Whole globe 

Data availability 
Landsat 4 from July 1982 to December 1993  
Landsat 5 from March 1984 to May 2012 

Common 
usage/purpose 

Vegetation monitoring, land use, land cover maps and monitoring of 
changes. 

5.6.1.11 Landsat 7 ETM+ 
The Landsat 7 Enhanced Thematic Mapper (ETM+) sensor is carried onboard Landsat 7. It provides 7 spectral bands 

and 1 thermal band.  
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Table 20: Basic facts Landsat 7 EMT+ 

Property Info 

Spatial resolution 
15 m for the panchromatic band and 30 m for the rest (the thermal band 
is re-sampled from 60 m) 

Sensor 
Enhanced Thematic Mapper (ETM+) with 8 spectral bands and 1 thermal 
band 

Revisit time 16 days 

Spatial coverage Whole globe 

Data availability Since April 1999 

Spatial resolution 
15 m for the panchromatic band and 30 m for the rest (the thermal band 
is re-sampled from 60 m) 

5.6.1.12 Landsat 8-9 
Landsat 8-9 Level 2 collection includes both Landsat 8 and the most recently launched Landsat 9 satellites 

(provided by NASA/USGS), both carrying the Operational Land Imager (OLI) and the Thermal Infrared Sensor 

(TIRS), providing seasonal coverage of the global landmass. Landsat 8-9 Level 2 provides global surface reflectance 

and surface temperature science products. Level 2 science products are generated from Collection 2 Level-1 inputs 

that meet the <76 degrees Solar Zenith Angle constraint and include the required auxiliary data inputs to generate 

a scientifically viable product. Both Level 1 [181]and Level 2 [182] data are available. Please note that Level 2 data 

does not include the panchromatic band. 

Table 21: Basic facts Landsat 8-9 

Property Info 

Spatial resolution 
15 m for the panchromatic band and 30 m for the rest (the thermal bands 
is re-sampled from 100 m) 

Sensor 
Operational Land Imager (OLI) with 9 spectral bands and Thermal Infrared 
Sensor (TIRS) with 2 thermal bands 

Revisit time 16 days 

Spatial coverage Whole globe 

Data availability 
Landsat 8: since February 2013 
Landsat 9: since February 2022 

Common 
usage/purpose 

Vegetation monitoring, land use, land cover maps and monitoring of 
changes. 

5.6.1.13 Envisat MERIS 
The purpose of the Medium Resolution Imaging Spectrometer (MERIS) is primarily, to aid in Ocean Colour 

Observations, and secondary, to aid in the understanding of the atmospheric parameters associated 

with clouds, water vapour and aerosols. Additionally, it is useful for land surface parameters, particularly for 

vegetation processes. It monitors changes of oceans (phytoplankton, yellow substance, suspended matter), 

atmosphere (water vapour, CO2, clouds, aerosols), and land (vegetation index, global coverage, moisture 

etc.). MERIS has a high spectral and radiometric resolution and a dual spatial resolution. It acquires 15 spectral 

bands, which can be programmed in their width and position. The data is available from June 2002 to April 2012. 

It has 3 days revisit time. Spatial Resolution: Full 260 m resolution across track and 290 m along track. Reduced 

resolution of 1040 m across track and 1160 m along track [183].  
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5.6.1.14 Digital Elevation Model 
A Digital Elevation Model (DEM) is a digital model or 3D representation of a terrain's surface. DEM allows analysing 

heights within an area of interest and integrate the data in 3D applications. The data can also be used for 

the orthorectification of satellite imagery (e.g., Sentinel 1). Sentinel Hub supports Mapzen's DEM, available 

through Amazon Web Services (AWS) [184] through EU-Central-1 and US-West-2 regions, and Copernicus DEM, 

available through AWS EU-Central-1 region. 

Copernicus DEM is based on World DEM that is infilled on a local basis with the following DEMs: ASTER, SRTM90, 

SRTM30, SRTM30plus, GMTED2010, TerraSAR-X Radar grammetric DEM, ALOS World 3D-30m. We provide two 

instances named COPERNICUS_30 and COPERNICUS_90, with worldwide coverage. COPERNICUS_90 uses COP-

DEM GLO-90, which has 90 meters resolution. COPERNICUS_30 uses COP-DEM GLO-30 Public, which has 30 

meters resolution, where it's available, and for the rest is uses GLO-90. Tiles that are missing from GLO-30 Public 

are not yet released to the public by Copernicus Programme. Both instances are static and do not depend on the 

date. It returns a homogeneous DEM with zeros in regions where there are no source tiles (e.g., in ocean areas). 

More information about the various elevation models on Sentinel Hub is available here [185, 186]  

5.6.1.15 MODIS 
MODIS (Moderate Resolution Imaging Spectroradiometer) is a sensor aboard two satellites, Aqua and Terra. It 

images the earth in 36 different bands at 3 different resolutions (250 m for bands 1-2, 500 meters for bands 3-7 

and 1 km for bands 8-36). The MCD43A4 V006 is a product used by Sentinel Hub, with daily global coverage, 

offering bands 1-7 in 500-meter resolution. 

The MCD43A4 V006 is a Version 6 Nadir Bidirectional Reflectance Distribution Function (BRDF) - Adjusted 

Reflectance (NBAR) dataset. As an NBAR product [187], it provides estimations of the surface spectral reflectance 

as it would be measured at ground level in absence of atmospheric scattering and absorption. Each pixel contains 

the best possible information available in a 16-day period as selected based on high observation coverage, low 

view angle, the absence of clouds or cloud shadow, and aerosol loading. The following information holds for the 

MODIS MCD43A4.006 data product in Sentinel Hub, and not for MODIS in general. 

Table 22: Basic facts MODIS 

Property Info 

Spatial resolution 500 m 

Sensor MODIS - Moderate Resolution Imaging Spectroradiometer 

Units Reflectance and DN 

Revisit time Daily 

Spatial coverage Global 

Data availability Since February 24, 2000 

Measurement Surface reflectance 

Common usage/purpose Monitoring of large-scale land, ocean and atmosphere changes, such as 
vegetation monitoring or flood, hurricane and wildfire detection. 

5.6.1.16 Commercial Data – Planet Scope 
Planet Scope [188] satellite constellation consists of more than 130 small satellites called Doves. Each Dove 

satellite is a CubeSat made of three cubic units and thus measures only 10 cm x 10 cm x 30 cm. The satellites are 

launched in groups, which constantly improves mission's characteristics such as revisit times, spatial and spectral 

https://en.wikipedia.org/wiki/CubeSat
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resolutions. The constellation is constantly "on" and does not require an acquisition planning. PlanetScope data is 

an excellent source for vegetation monitoring. It complements Sentinel-2 data with better spatial resolution and 

better temporal coverage, which is especially important in cloudy areas as it increases the chance of acquiring a 

cloudless image. 

Table 23: Basic facts PlanetScope 

Property Info 

Spatial resolution 3 m (resampled) 

Sensor Four-band frame Imager: Blue, Red, Green and Near-Infrared band 

Revisit time 1 day 

Spatial coverage global 

Data availability Since 2009 

Measurment Top of the atmosphere (TOA) reflectance 

Common usage/purpose Land-cover maps, land-change detection maps, vegetation monitoring 

5.6.1.17 Commercial Data – Pleiades 
Pléiades [189] is composed of two twin satellites orbiting the Earth 180° apart. The satellites deliver 0.5 m optical 

imagery and offer a daily revisit capability to any point on the globe. A data acquisition must be tasked and various 

collection scenarios are available: Target, Strip Mapping, Tri-Stereo, Corridor and Persistent Surveillance. Pleiades' 

satellites share the orbit with SPOT satellites, which makes it possible to combine the data form both sources.  

The Pléiades data with its high spatial resolution is suitable for a range of remote sensing applications such as 

vegetation monitoring, precise mapping, risk and disaster management. 

Table 24: Basic facts Pléiades 

Property Info 

Spatial resolution 0.5 m for panchromatic band and 2 m for all other bands 

Sensor Multispectral Imager, 5 bands: panchromatic, Blue, Red, Green and Near-
Infrared band 

Revisit time Up to a daily revisit of any point on the globe. 
A data acquisition must be tasked; data is not acquired systematically. 

Spatial coverage global 

Data availability Since December 2011 

Measurment Top of the atmosphere (TOA) reflectance 

Common usage/purpose vegetation monitoring, risk and disaster management, urban and mapping 
applications, civil engineering 

5.6.1.18 Commercial Data – SPOT 
SPOT 6/7 [190] constellation is composed of two twin satellites orbiting the Earth 180° apart. The satellites deliver 

1.5 m optical imagery and offer a daily revisit capability to any point on the globe. SPOT 6/7 data with its high 

spatial resolution is suitable for a range of remote sensing applications such as vegetation monitoring, precise 

mapping, risk, and disaster management. 
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Table 25: Basic facts SPOT 

Property Info 

Spatial resolution 1.5 m for panchromatic band and 6 m for all other bands 

Sensor Multispectral Imager, 5 bands: panchromatic, Blue, Red, Green, and Near-
Infrared band 

Revisit time Up to a daily revisit of any point on the globe. 
A data acquisition must be tasked; data is not acquired systematically. 

Spatial coverage global 

Data availability Since September 2012 

Measurment Top of the atmosphere (TOA) reflectance 

Common usage/purpose vegetation monitoring, risk and disaster management, urban and mapping 
applications, civil engineering 

More information: https://www.intelligence-airbusds.com/en/8577-spot-67-user-guide-download. 

5.6.1.19 Commercial Data – WorldView (+GeoEye) 
WorldView provides high resolution optical imagery and is owned by Maxar [191]. It is now possible to purchase, 

order and access WorldView data using Sentinel Hub. Sentinel Hub orders WorldView data through European 

Space Imaging. The WorldView constellations consists of four active satellites: WorldView-1 (data not available in 

SH), GeoEye-1 (GE01), WorldView-2 (WV02), and WorldView-3 (WV03). The WorldView-4 (WV04) satellite was 

operational from November 2016 to January 2019 and the data it acquired is available in Sentinel Hub. 

Table 26: Basic facts WorldView  

Property Info 

Spatial resolution 
Varies from 0.3m to approx. 2m. SH supports 0.5 m for panchromatic band 
and 2 m for multispectral bands. 

Sensor 
Multispectral Imagery, 5 bands are supported in SH: panchromatic, Blue, Red, 
Green and Near-Infrared band. 

Revisit time 

From approx. 1 day to 3 days depending on the satellite. Note that the data is 
in general not acquired systematically. Archive data is available sporadically 
over an area of interest. In case you need systematic monitoring of a specific 
area, contact us to order tasking (different pricing conditions apply). 

Spatial coverage Global 

Data availability Since 2009 

Measurement Top of the atmosphere (TOA) reflectance 

Common 
usage/purpose 

Land-cover maps, land-change detection maps, vegetation monitoring, 
defence, traffic, marine monitoring 

 

  

https://www.intelligence-airbusds.com/en/8577-spot-67-user-guide-download
https://docs.sentinel-hub.com/api/latest/static/files/data/maxar/world-view/resources/brochures/EUSI_Company_Brochure.pdf
https://docs.sentinel-hub.com/api/latest/static/files/data/maxar/world-view/resources/brochures/EUSI_Company_Brochure.pdf
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5.6.2 Other data sources 

5.6.2.1 EO-derived data 
Sentinel Hub, with its Bring your own Data functionality allows sharing any raster-based data. Such datasets can 

be used as a source of “ground truth”, as validation datasets, filters (e.g., remove pixels that belong to water in 

Global Surface Water data collection) etc. The possibilities of having access to such wide array of data are endless.  

Table 27: Various EO-derived data collections, accessible through Sentinel Hub 

Data collection Availability - Spatial 
Availability – 
Temporal 

Revisit 

Sentinel-2 L2A 120m 
Mosaic 

 

Land surface area between 58°S 
and 72°N 

2019, 2020 15 days 

Corine Land Cover Pan-European, French overseas 
regions and departments 

1990, 2000, 2006, 
2012, 2018 

 

every 6 years 

Corine Land Cover 
Accounting Layers 

EEA39 region 2000, 2006, 2012, 
2018 

 

every 6 years 

ESA WorldCover Global land 2020 yearly 

Global Land Cover Global land 2020 yearly 

Global Surface Water Global coverage from longitude 
170°E to 180°W and latitude 
80°N to 50°S 

1984 ￫ 2019, 1984 

￫ 2020 

yearly 

Global Human 
Settlements Layer  

Global coverage with longitude 
from 180°W to 180°E and 
latitude from 72°N to 56°S 

2018 static 

Sea Ice Index Longitude from 180°W to 180°E 
and latitude from 39.23°N to 
90°N and 30.98°S to 90°S 

2017 ￫ May 2021 

 

none (demo) 

Water Bodies Global coverage from longitude -
180°E to +180°W and latitude 
+80°N to -60°S. Depending on 
the month, some high latitude 
areas are not available 

October 2020 ￫ monthly 

Seasonal Trajectories, 
10-daily  

Europe January 2017 ￫ yearly 

Vegetation Indices, 
daily 

Europe October 2016 ￫ 
February 2021 

daily 

Vegetation Phenology 
and Productivity 
Parameters Season 1, 
yearly 

Europe January 2017 ￫ yearly 

https://collections.sentinel-hub.com/sentinel-s2-l2a-mosaic-120/
https://collections.sentinel-hub.com/sentinel-s2-l2a-mosaic-120/
https://collections.sentinel-hub.com/corine-land-cover/
https://collections.sentinel-hub.com/corine-land-cover-accounting-layers/
https://collections.sentinel-hub.com/corine-land-cover-accounting-layers/
https://collections.sentinel-hub.com/worldcover/
https://collections.sentinel-hub.com/worldcover/
https://collections.sentinel-hub.com/global-surface-water/
https://collections.sentinel-hub.com/global-human-settlement-layer-ghs-built-s2/
https://collections.sentinel-hub.com/global-human-settlement-layer-ghs-built-s2/
https://collections.sentinel-hub.com/sea-ice-index/
https://collections.sentinel-hub.com/water-bodies/
https://collections.sentinel-hub.com/seasonal-trajectories/
https://collections.sentinel-hub.com/seasonal-trajectories/
https://collections.sentinel-hub.com/vegetation-indices/
https://collections.sentinel-hub.com/vegetation-indices/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-1/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-1/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-1/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-1/
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Vegetation Phenology 
and Productivity 
Parameters Season 2, 
yearly 

Europe January 2017 ￫ yearly 

Theia Land Cover Map France  2016-2020 yearly 

 

5.6.2.2 Type of Data, Purpose and Determined use  
As a rule, the data, with the exception of user-login information, should not contain any personal data. Users can 

obtain specific data from different services and applications. Some data, provided through eo-learn, might come 

from third-party services and applications. In such a case, the user is subject to the licensing, personal data 

collection and management therein.  

The access to EO data is provided through the Sentinel-Hub services. EO data does not contain any personal 

information. In order to use the service, the user has to provide some personal information that is used for login 

(e.g. name and e-mail), as described in Privacy Policy [192].  

5.6.2.3 Analysis of data management and privacy for Smart-Farming in each country and across EU 
Data-driven machine learning modelling schemes promise to pave ways for the exploitation and valorisation of 

EO data at large spatial scale and temporal frequency. Although such techniques have shown impressive 

performance in the recent past, this advantage comes with the burden of increased computational costs and 

requires the availability of huge amounts of data. While the input data is nowadays provided through modern and 

numerous Earth observation technologies at high quantity and various modalities, these data repositories lack 

matching annotation data, needed as ground-truth reference for training machine learning models. Since such 

approaches are condemned to infer the physical interrelationships of the observed processes exclusively from the 

patterns contained in the training data, special requirements must be placed on the available reference data. 

Besides the high volume of data needed to optimize the huge number of parameters driving such models, the 

provided training data needs to show enough diversity and variability to provide meaningful learning signals. 

Further, it needs to be complete, in order cover all possible configurations expected to be perceived at inference 

time. On top, such data must show sufficient degree of reliability and trustworthiness, to avoid the extraction of 

bogus information which would manifest in spurious correlations extracted from the training data. Sourcing such 

data is an important, yet tedious, expensive, and error-prone task and, thus, prohibitively expensive. The 

EuroCrops project (eurocrops.tum.de) addresses these issues. 

5.6.2.4 Crop-Type Reference Data 
The automated identification of vegetation classes of cultivated crops instantiates one particularly relevant task 

in remote sensing Earth observation in general. Evidently, the contemporary satellite missions provide meaningful 

data at various scales and modalities that capture the phenological processes of vegetation. Previous studies have 

shown that modern machine learning approaches can extract relevant data representations efficiently and 

reliable. Nevertheless, as outlined before, they are to data limited by the availability of rich ground-truth 

annotations. 

https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-2/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-2/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-2/
https://collections.sentinel-hub.com/vegetation-phenology-and-productivity-parameters-season-2/
https://collections.sentinel-hub.com/cnes-land-cover-map/
https://www.eurocrops.tum.de/
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EuroCrops [193] is a dataset collection combining all publicly available self-declared crop reporting datasets from 

countries of the European Union. The project is funded by the German Space Agency at DLR on behalf of the 

Federal Ministry for Economic Affairs and Climate Action (BMWK). It takes advantage of already existing data 

sources: Under the umbrella of the EU's common 

agricultural policy (CAP), farmers must provide self-

declarations of all the crops they are cultivating on their 

field parcels and report this information to the local 

authorities. These carry out extensive quality checks, e.g., 

in-situ surveys, as such information is ultimately used to 

distribute subsidy payments back to the farmers. As such, 

those data can be considered the gold-standard of 

information which makes it highly suitable for various 

machine learning training schemes. 

Until recently, only a few EU member states had made this 

information publicly available, making it inaccessible and 

mostly invisible to the research and application domains of 

machine learning and remote sensing. The EuroCrops 

initiative has set itself the mission of getting these states 

to cooperate and collect such data in a unified way. At the 

current time, more than 15 countries (shown in Figure 55) 

contribute data or intend to do so over the course of the 

project. 

5.6.2.5 Trans-National Taxonomy 
Although the mere compilation of the data described earlier 

is already a mammoth task, it is not yet readily usable in its 

entirety due to the different coding schemes used by the 

member states. As these are usually optimized to allow the 

best possible processing of such data for the country in 

question, they are usually not readily compatible with those 

of other countries which may use representation regimes 

that cover diverging sets of classes or different granularity. 

For that reason, EuroCrops comes with an own 

representation scheme for cultivated crop classes, the 

hierarchical crop and agriculture taxonomy (HCAT). As 

illustrated in HCAT organizes all species hierarchically with 

respect to their phylogenetics, phenotypes, or agricultural 

usage. This provides country-pair-wise bidirectional 

mappings and, thus, allows for  Figure 56 information-

preserving conversion between national schemes and HCAT. As each node and leaf of the nomenclature tree is 

precisely described by a unique identifier, cross-country comparison becomes possible, even when data is 

provided at different granularity. 

 
Figure 55: EuroCops Data. In green the countries 

already participating and orange the ones that intend 
to participate 

 
Figure 56: Illustration of hierarchical crop and 

agriculture taxonomy 
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5.6.2.6 Additional Information 
EuroCrops contains geo-coded polygons describing all 

field parcels registered relevant for CAP in any 

contributing country. Each of these records is augmented 

with the reported crop class label in HCAT representation, 

as visualized in Figure 57. Further, EuroCrops provides 

translations of each crop class from their local language 

into English. 

EuroCrops data, once harmonized and ready, will be 

available through GeoDB [194], a Euro DataCube service 

provided by Brockmann Consult. EO-learn has already 

been extended with tasks to facilitate the retrieval of data 

from GeoDB collection. 

5.6.2.7 Advantages and applications of EO data 
Some of the advantages of EO for crops and live stocks according to the UK Space Agency are: 

• Coverage and quality: Satellites have regular revisit times, as they orbit the earth and provide consistent 

observations of land features, making it possible to monitor agriculture and scale up as appropriate from field 

and farm to catchment, landscape, regional, national, and global scale in an accurate and repeatable way. 

• Range of data: Satellites collect data via several sensor types. This allows identification of crop and vegetation 

types and the monitoring of many different environmental conditions including moisture, temperature, soil 

condition and vitality of leaf vegetation. 

• Analysis ready data: Satellite data can be processed to defined industry standards and organized in a form 

that allows immediate value-addition and analysis, for example as inputs to models, such as those being 

developed in IPP. Field, farm, or regional scale measures can be derived automatically using satellite imagery 

and presented as simple outputs in the form of maps, dashboards, spreadsheets, and graphs compatible for 

use with Geographic Information Systems (GIS), farm and business management platforms. Satellite data 

services enable these products to be delivered directly to agricultural stakeholders. 

• Remoteness and safety: Data collection using satellites is significantly faster than on-ground data collection 

and is a safe and cost-effective way to obtain data in remote areas or areas affected by conflict. 

• Speed of delivery: Increasingly, analysis ready EO data is available for use soon after it is acquired, which is 

important for crop production monitoring or in disaster situations where a rapid response is required. Satellite 

data services enable stakeholders to quickly receive the EO derived information they need. 

In addition, there are several EO sets of data from satellites free and open access. Regarding the aircraft systems 

or drones, they are fast growing but they are limited to restrictions (regulation) for their use. 

5.6.3 IoT enabled agro-environmental sensing stations 
Internet of Things (IoT) has become a key technology that enables continuous monitoring and control of crops, 

soil, and microclimate as it allows farmers to obtain (near) real time quantitative data with high spatiotemporal 

resolution. IoT is a system of devices connected remotely (over the Internet or other communications networks). 

According to Chamara et al. (2022), there is a boom in the adoption of internet connectivity solutions in agriculture 

in the last two decades, for improving the sustainability of the farming practices. The IoT includes different sensors 

that monitor crops lifecycle and animals, such as acoustic sensors, biological sensors, chemical sensors, electric 

 
Figure 57: Map with recorded crop class labels in 

HCAT representation. 
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sensor, mechanical sensors, optical sensors, thermal sensors, etc and retrieves information to farmers in mobile 

phones or devices.  

Table 28: Sensor types and their applications [195] 

Sensors Applications Working Procedure 

Acoustic sensors Pest monitoring and detection classifying 

seed varieties, fruit harvesting. 

Measuring the variations in noise level 

when intermingling with other materials, 

i.e., soil particles. 

Airflow sensors Measuring soil air permeability, moisture, and 

structure in a static position or mobile mode. 

Based on various soil properties, unique 

identifying signatures. 

Eddy covariance-

based sensors 

Quantifying exchanges of CO2, water vapor, 

methane, or other gases. Measuring surface 

atmosphere and trace gas fluxes in various 

agricultural ecosystems. 

Measuring continuous flux over large 

areas. 

Electrochemical 

sensors 

Measuring soil nutrient levels and pH. Nutrients in soil, salinity, and pH are 

measured using sensors. 

Electromagnetic 

sensors 

Recording electrical conductivity, 

electromagnetic responses, residual nitrates, 

and organic matter in soil. 

Electrical circuits measure the capability 

of soil particles to conduct or accumulate 

electrical charge. 

Field 

programmable 

gate array (FAAA) 

based sensors 

Measuring real-time plant transpiration, 

irrigation, and humidity. 

Programmable silicon chips and logic 

blocks are surrounded together by 

programmable interconnected resources 

of the digital circuit. 

Light detection 

and ranging 

(LIDAR) 

Land mapping, soil type determination, farm 

3D modelling, erosion monitoring and soil 

loss, and yield forecasting. 

Sensors emit pulsed light waves and 

bounce off when colliding with objects 

and are returned to the sensor.  

Mass flow sensors Yield monitoring based on the 

amount of grain flow through a combine 

harvester. 

Sensing the mass flow of grain with 

modules, e.g., grain moisture sensor, 

data storage device, and an internal 

software. 

Mechanical 

sensors 

Soil compaction or mechanical resistance. Sensors record the force assessed by 

strain gauges or load cells. 

Optical sensors Soil organic substances, soil moisture, colour, 

minerals, composition, clay content, etc. 

Fluorescence-based optical sensors are used 

to supervise fruit maturation. Integrating 

optical sensors with microwave scattering to 

characterize orchard canopies. 

Sensors use light reflectance phenomena 

to measure changes in wave reflections. 

Optoelectronic 

sensors 

Differentiate plant types to detect weeds in 

wide-row crops. 

Sensors differentiate based on reflection 

spectra. 

Soft water level-

based (SWLB) 

sensors 

Used in catchments to characterize 

hydrological behaviours (water level and 

flow, time-step acquisitions). 

Measuring rainfall, stream flow, and 

other water presence options. 

Telematics 

sensors 

Assessing location, travel routes, and 

machine and farm operation activities. 

Telecommunication between places 

(especially inaccessible points). 
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Sensors Applications Working Procedure 

Ultrasonic ranging 

sensors 

Tank monitoring, spray distance 

measurement, uniform spray coverage, 

object detection, monitoring crop canopy, 

and weed detection. 

An ultrasonic sensor uses a transducer to 

send and receive ultrasonic pulses that 

relay information about an object’s 

proximity. 

Remote sensing Crop assessment, yield modelling, forecasting 

yield date, land cover and degradation 

mapping, forecasting, the identification of 

plants and pests, etc. 

Satellite-based sensor systems collect, 

process, and disseminate environmental 

data from fixed and mobile platforms. 

Among sensors for crop monitoring the loadcells are used in indoor farming pots to measure the plant weight.  

The chemical sensors are used to measure soil nutrients, oxygen, carbon dioxide, methane, pH and conductivity 

of irrigation water, and photosynthesis. Based on the chemical or electrical technique used chemical sensors are 

mainly categorized in two types: photochemical, which measure chemical reactions or chemical by their spectral 

signature; and electrochemical sensors, which measure the electrical properties due to chemical reactions or the 

presence of chemicals.  

There are four fundamentals features of IoT for their application in the agriculture: 

• Robust model: The distinctive features of the agriculture sector are diversity, complexity, spatio-temporal 

variability, and uncertainties of the right types of harvests and facilities. 

• Scalability: The variation in farm size from smaller to larger; hence, the results should be scalable. The 

placement and testing planning should be progressively scaled up with fewer expenses. 

• Affordability: Affordability is vital to farming achievement, and therefore price should be suitable with 

significant assistance. Standardized platforms, products, tools, and facilities could obtain a satisfactory price. 

• Sustainability: The problem of sustainability is a vital issue due to strong economic pressure and intense 

competition worldwide. 

5.6.4 Quality of the parcels’ signal 
The EU CAP requires the control of subsidies claimed annually for millions of agricultural parcels over all Member 

States. All parcels, whether small, large, elongated or rectangular, need to be monitored. Small and elongated 

parcels pose a challenge for the Checks by Monitoring system (as well as the future Area Monitoring System) that 

uses Copernicus Sentinel data as the main data source. Figure 58 shows the results addressing these challenges 

using Planet Scope and Planet Fusion data to monitor parcels that are too small to be monitored with Sentinel. 

 
Figure 58: Planet Fusion, May 1st 2021, Ptuj, Slovenia 
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To ensure the quality of the parcels’ signal, Joint Research 

Centre (JRC), the research body of the European 

Commission, recommends a limiting criteria of at least 

eight full Sentinel-2 pixels inside the border of the specific 

Feature Of Interest (FOI) and, if possible, introduction of 

5-meter (1/2 Sentinel-2 pixel) internal buffer [196]. This 

rule makes a lot of sense. Sentinel-2 data are not 

perfectly aligned (same for all other automatically 

processed satellite data), its multi-temporal geometrical 

accuracy being assessed as 0.3 pixels, which is why the 

spectral measurements at the border will be distorted 

with the signal of the neighbourhood objects (Figure 59). 

And taking statistics of numerous observations within the 

field will surely produce much better quality of the 

results. The reality, however, is often not too compliant 

with scientific best practices. In several member states, where agriculture parcels were often split during the 

inheritance proceedings, more than 40% of the parcels are lost by complying to this rule, even if not considering 

the internal buffer. 

Due to this structure of the parcels, in selected EU countries, it has been decided, together with Paying Agencies, 

to use Sentinel for monitoring of all parcels, which contain at least one full Sentinel-2 pixel. Even then, there are 

parcels that do not contain even a single full Sentinel-2 pixel. One might argue that even though there are indeed 

a large number of “problematic” parcels, these represent only a small percentage of the total area (and thus 

distributed funds), 3% to be precise, so this is not really a problem. However, the current set of Check by 

Monitoring and Area Monitoring System (AMS) rules in many EU countries require all parcels to be monitored and 

this makes sense to ensure fair and non-discriminatory handling of all farm holders. 

5.6.4.1 Addressing the challenge of small parcels 
With Sentinel data being out of the picture for monitoring of small parcels, there are a handful of options 

remaining. The most mentioned one is using Geotagged photo application, where the Paying Agency asks the 

farmer to take several pictures of the field using their mobile phones. This sounds simple, but introduces a new 

administrative burden for the farmer, the hated red tape, and might represent a significant technological obstacle 

for the older generation. It is also time consuming, both for the farmer as well as for the Paying Agency, whose 

staff then has to go through hundreds of thousands of good-or-bad photos. On the other side of the spectrum is 

the rapid field visit option, Paying Agency taking most of the burden, but this makes the overall process extremely 

expensive. Using Earth observation data seems to be the most feasible way to perform wall-to-wall monitoring. 

And so far the only feasible option we’ve found, aside from Sentinel, is Planet’s PlanetScope monitoring product, 

which provides systematic, near-daily imaging of the entire Earth’s landmass. The alternative very high-resolution 

satellite providers require tasking and are not technically feasible. We have experimented with one of them and 

they were not able to provide consistent weekly products even for an area 10x10km due to competitive tasks in 

the area. But if they were, this option would probably be way too expensive. Even in the foreseeable future this 

will probably not change. Several startups have announced plans for (sub)meter-level resolution and daily 

cadence, but it will take several years for them to get there. If they actually do manage. And then costs will 

probably remain problematic. Sentinel-2 Next Generation will presumably do the job, but this is at least five to 

ten years away. 

 
Figure 59: Number of Sentinel-2 pixels within a FOI 

(feature of interest) 
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5.6.5 Planet Fusion Solution for CAP 
We decided to test Planet Fusion within our area monitoring activities. We got Planet Fusion for eight 24x24 km² 

large tiles that together cover around one-quarter of all parcels in Slovenia. We were excited to be able to test 

this capability that promises cleaner data for our modelling through radiometric harmonization and the removal 

of clouds, cloud shadows, and other kinds of noise and provides gap-filled surface reflectance values daily.The plot 

below shows Planet Fusion NDVI time series for the same parcel as shown above. As you can see the time series 

is smooth, which is to some extent by design. 

The number of parcels with detected mowing events using PlanetScope is thus lower by almost a factor a two 

when compared to Planet Fusion. Since the number of meadows (including small ones) is large in Slovenia this 

leads to a significant reduction of the number of inconclusive parcels and consequently large efforts the Slovenian 

National Paying Agency would have to invest to resolve them. This fact alone justifies the usage of Planet Fusion 

over PlanetScope. On the other hand, there are only around 4 thousand parcels where the algorithm finds an 

event with Sentinel-2 but not with Planet Fusion 

 
Figure 60: Map of the average number of valid Sentinel-2 observations per parcel 

Studies showed that Planet Fusion is an excellent data source for monitoring small and elongated parcels. Beyond 

resolution, the value is also showcased in mowing markers, where consistency of individual observations in a time 

series is of paramount importance. In addition to small parcels, Planet Fusion has also been used to get a second 

opinion about parcels where mowing events were expected, but not detected with Sentinel-2 data. 
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6 Data models and systems 
This chapter focuses on the core aspects of data interoperability within the AgriDataValue project. In this chapter, 

we work on mapping the essential components and frameworks that enable the seamless exchange, integration, 

and utilization of agricultural data.  

Effective data models and systems are critical for achieving the project's objectives. These components provide a 

foundation for organizing, structuring, and representing agricultural data in a consistent and standardized manner. 

By establishing robust data models and systems, we can ensure the seamless exchange of data between different 

stakeholders, systems, and technologies involved in the AgriDataValue project. 

Through the exploration of data models and systems, this chapter aims to provide valuable insights and guidelines 

for enabling effective data interoperability, integration, and utilization within the AgriDataValue project, 

ultimately contributing to the advancement of smart farming and sustainable agricultural practices. In this 

document, that will evolve, we will try to address not only the challenges of intra dataspace interoperability (which 

involves data integration and exchange within the AgriDataValue project's own ecosystem) but also the critical 

aspect of inter dataspace interoperability. This broader perspective encompasses the seamless exchange and 

harmonization of data with external dataspaces from agriculture and/or other industries. 

6.1 Review of existing data model frameworks  

In this section, we conduct a review of existing data model frameworks that are relevant to the AgriDataValue 

project. We explore a range of frameworks with a focus on their applicability to the agricultural domain and their 

potential to support data interoperability. Two prominent frameworks that warrant special attention in this review 

are GAIA-X and IDSA, which offer standards and guidelines for data exchange and interoperability. 

 

The GAIA-X Trust Framework provides a robust and reliable foundation for data sharing and collaboration in the 

digital ecosystem. It establishes a set of principles, rules, and standards to ensure trust, security, and sovereignty 

of data. The AgriDataValue project can greatly benefit from the GAIA-X Trust Framework as it aims to strengthen 

the capacities for smart farming and enhance the environmental and economic performance of the agricultural 

sector. By adhering to the principles and guidelines of the GAIA-X Trust Framework, AgriDataValue can ensure 

secure and transparent data exchange among diverse stakeholders within the agricultural domain. The 

framework's focus on data sovereignty and control allows AgriDataValue to maintain ownership and governance 

over its data assets while promoting interoperability and collaboration with other projects and initiatives.  

The International Data Spaces Association (IDSA) offers a framework for secure and trusted data exchange. IDSA 

promotes a decentralized approach to data sharing and interoperability by providing specifications, protocols, and 

architectures. The IDSA framework emphasizes concepts such as data sovereignty, semantic interoperability, and 

data usage control. By leveraging the IDSA framework, the AgriDataValue project can enhance its data 

interoperability capabilities while ensuring compliance with security and privacy requirements. 

There is a notable trend among data sharing initiatives such as IDSA, GAIA-X, BDVA, and FIWARE to align their 

technical approaches and architectures, facilitated by the collaborative efforts of the Data Spaces Business 

Alliance (DSBA) [197]. The AgriDataValue project consortium recognizes the significance of this alignment and 

commits to staying updated on DSBA's publications to ensure compliance with these initiatives and their 

frameworks. Specifically, the DSBA publishes valuable insights and guidelines for technical convergence in the 
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form of a technical convergence document [198], which serves as a reference for the AgriDataValue project's 

interoperability efforts. 

Beyond GAIA-X and IDSA, several other data model frameworks merit consideration for their potential 

applicability to the AgriDataValue project. Some examples include: 

• Open Geospatial Consortium (OGC): The OGC offers standards and specifications for geospatial data 

interoperability. This framework can support the integration of spatial data, such as soil types, weather 

patterns, and satellite imagery, into the AgriDataValue project. 

• Sensor Observation Service (SOS): The SOS is an OGC standard for exchanging sensor data. It provides a 

standardized interface for accessing and sharing real-time data from agricultural sensors, facilitating 

interoperability among different sensor networks and platforms. 

• Agricultural Linked Data (AgLD): AgLD is an initiative that promotes the use of Linked Data principles to 

enhance the integration and exchange of agricultural data. By leveraging semantic web technologies, 

AgLD facilitates interoperability by linking and enriching diverse agricultural datasets. 

• AgGateway ADAPT: ADAPT is an interoperability framework developed by AgGateway, a consortium 

focused on agricultural data exchange. It provides guidelines and tools for seamless data integration 

across different agricultural systems, improving efficiency and collaboration within the sector. 

• Agriculture Information Model (AIM): As already explained, AIM is an information model for data 

interoperability developed by DMETER project. The AIM model adopts widespread standardized solutions 

such as NGSI-LD, Saref4Agri and ADAPT, to enable interoperability of heterogeneous data handling 

approaches. For this conversion to be feasible, each AKIS needs to provide the specifications of the utilized 

data model and semantics, or it should parse returning content in the AIM format. The AIM is not built ab 

initio but incorporates and extends existing ontologies and vocabularies already available for this domain. 

The review of existing data model frameworks has highlighted the importance of leveraging established 

frameworks such as GAIA-X and IDSA to enhance data interoperability within the AgriDataValue project. These 

frameworks, along with others like OGC, SOS, AgLD, ADAPT and AIM, offer valuable guidelines, standards, and 

specifications that can inform the development of robust and effective data models specific to the agricultural 

domain. By adopting these frameworks, the AgriDataValue project can ensure compatibility, secure data 

exchange, and facilitate collaboration with external stakeholders and data providers. 

6.2 Data Model Exchange and Semantic Interoperability  

Effective data model exchange plays a vital role in enabling semantic interoperability among diverse agricultural 

systems and stakeholders. By facilitating the seamless sharing and understanding of data models, it becomes 

possible to align data structures, semantics, and relationships across different platforms and domains. This, in 

turn, promotes efficient data integration, collaboration, and meaningful insights for smart farming, environmental 

enhancement, and economic performance improvement. To do so, we identified the categories below as the main 

drivers to ensure the semantic interoperability within AgriDataValue project:  

• Standardized Data Model Formats: Adopting standardized data model formats, such as XML, JSON, or RDF, 

facilitates easy exchange and interpretation of data models between different systems and stakeholders. 

These formats provide a common syntax and structure that enable seamless data model integration and 

interoperability. 
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• Data Model Mapping and Transformation: Data model mapping and transformation mechanisms allow for 

the conversion of data models from one format or structure to another. By employing appropriate mapping 

techniques and transformation tools, different data models can be aligned and harmonized, ensuring 

compatibility and seamless data exchange. 

• Metadata and Vocabulary Alignment: Metadata and vocabulary alignment techniques play a crucial role in 

data model interoperability. By aligning metadata definitions, data element names, and controlled 

vocabularies across systems, data models can be effectively integrated and understood, promoting 

consistency and shared understanding among stakeholders. 

• Ontology-based Interoperability: Leveraging ontologies and semantic web technologies can enhance data 

model interoperability by capturing domain-specific knowledge and establishing semantic relationships 

between data elements. Ontologies provide a common vocabulary and enable reasoning capabilities, allowing 

for advanced data integration and inference across diverse data models. 

Semantic data model exchange is essential for achieving meaningful data integration and collaboration across 

diverse agricultural systems. By leveraging semantic interoperability, the AgriDataValue project can ensure that 

data models are understood and interpreted accurately, fostering a shared understanding of agricultural data 

and enabling efficient data exchange, integration, and analysis. 

6.2.1 Semantic Interoperability Mechanisms 
In this section we highlight the main semantic technologies for interoperability. As semantic technologies and 

standards evolve, it is essential for the AgriDataValue project to stay in alignment with emerging frameworks, and 

best practices in semantic interoperability in agriculture.  

6.2.1.1 FIWARE NGSI and FIWARE AgriFood Data Model 
FIWARE NGSI provides a standard API for data management and exchange, while the FIWARE AgriFood Data 

Model offers a comprehensive data model specifically designed for the agriculture domain. Leveraging these 

mechanisms, AgriDataValue can achieve semantic interoperability by exchanging and harmonizing data using 

FIWARE standards. 

6.2.1.2 GS1 Standards and Data Model  
GS1 standards, widely used in supply chain management, facilitate semantic interoperability by providing a 

common framework for data exchange and identification of agricultural products. By incorporating GS1 standards 

and data models, AgriDataValue can enhance interoperability across the supply chain, from farm to consumer. 

6.2.1.3 Saref4Agri  
Saref4Agri is an ontology that enables semantic interoperability in the agricultural domain. It provides a shared 

vocabulary for describing and integrating agricultural data, facilitating data exchange and integration across 

different systems and stakeholders. 

6.2.1.4 IDS Information Model  
The International Data Spaces (IDS) Information Model provides a domain-agnostic reference model, that acts as 

a top-level ontology for secure and sovereign data exchange across industries, that can also be used for agriculture 

domain. By adhering to the IDS Information Model, AgriDataValue can achieve semantic interoperability while 

ensuring data sovereignty and security. 
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The IDS Information Model serves as the underlying framework for describing and publishing Data Assets and Data 

Apps within the Industrial Data Space. These resources are fundamental components of the IDS and are published 

in a structured, semantically annotated format to ensure that only relevant resources are provided to meet the 

specific needs of Data Consumers. This approach enables automated resource discovery and consumption through 

service interfaces and protocol bindings that are defined using semantic definitions. 

 

In addition to its core resources, the Information Model also encompasses other critical elements of the IDS, 

including participants, infrastructure components, and processes. However, it's important to note that the 

Information Model itself is not domain-specific and delegates domain modeling to shared vocabularies and data 

schemata provided by specific communities within the Industrial Data Space. Furthermore, the Information Model 

does not include a meta-model for defining custom structured datatypes, unlike other standards such as OData 

or OPC-UA. While the Information Model provides a generic framework for describing digital assets and facilitating 

their interchange, it does not address the side effects of data exchange on the Data Consumer's side, such as real-

time machine control scenarios. Additionally, the Information Model does not cover the remote procedure call 

(RPC) semantics of data messages. It is essential to understand that the Information Model focuses on 

standardized resource description and publication within the Industrial Data Space, with certain considerations 

and aspects falling outside its scope. 

6.2.1.5 INSPIRE Data Model for Agricultural and Aquaculture Facilities  

The INSPIRE data model provides a harmonized framework for the exchange and integration of geospatial data 

related to agricultural and aquaculture facilities. By utilizing the INSPIRE data model, AgriDataValue can facilitate 

semantic interoperability of geospatial information in the agricultural sector. 

6.2.1.6 OGC SensorThings API  
The OGC SensorThings API is a standard for IoT sensor data exchange and interoperability. It provides a unified 

interface for querying and accessing sensor data, enabling semantic interoperability across diverse sensor 

networks and platforms in the agricultural domain. 

6.2.1.7 Semantic Web Rule Language 

SWRL is a rule language for the Semantic Web that combines OWL ontologies with rules expressed in the form of 

logical axioms. By leveraging SWRL, AgriDataValue can enhance semantic interoperability by defining rules that 

facilitate automated reasoning and inference over agricultural data. 

6.2.1.8 AgGateway ADAPT 

AgGateway's ADAPT framework offers a comprehensive set of tools and specifications for seamless data 

integration and interoperability in the agricultural domain. ADAPT enables the mapping and transformation of 

data models, facilitating semantic interoperability across various agricultural systems and applications. 

6.2.1.9 Other Semantic Interoperability Mechanisms 

Additional mechanisms that contribute to semantic interoperability in the AgriDataValue project include the 

rmAgro model, Semantic Sensor Network (SSN) ontology, AGROVOC, FOODIE ontology, FOODON ontology, 

Weather Data Models, ADAPT (Agricultural Data Application Programming Toolkit), DCAT, W3C Data Quality 

Vocabulary, PROV-O, and DUV. These mechanisms offer standardized vocabularies, ontologies, and frameworks 

for improved semantic interoperability and data integration. 
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The AgriDataValue project consortium commits to compliance with established semantic frameworks and 

initiatives, such as the ones mentioned above, to ensure semantic interoperability. By aligning with these 

frameworks, AgriDataValue can enhance collaboration and data exchange with external stakeholders, enabling 

effective semantic data model exchange and interoperability. 

6.3 Data transfer, processing, privacy, storage requirements 

The International Data Spaces Association (IDSA) has established a comprehensive set of standards that serve as 

the foundation for data exchange and data sovereignty, aligning with European principles of trust and data usage 

self-determination. The IDS Reference Architecture (IDS-RAM) [199] operates at a higher level of abstraction 

compared to typical architecture models for specific software solutions. It offers a holistic perspective 

complemented by specialized architecture specifications that provide detailed insights into the specific 

components of the International Data Spaces, such as Connector, Broker, and App Store. 

 
Figure 61: Infographic depicting IDS-compliant dataspace 

The infographic above illustrates the process of data exchange within an IDS-compliant data space, highlighting 

the roles described in the IDS-RAM. Primarily, data exchange occurs between data providers and data consumers, 

with data providers having the ability to define usage policies for their data, specifying rules on how the provided 

data should be consumed. According to the IDS approach, the participants in a dataspace can either be a data 

provider or a data consumer and all the participants should access the dataspace via an IDS connector. IDS 

approach focuses on data exchange and explains how it should happen. According to the IDS approach, data 

storage is an external process, which is not positioned inside the dataspace.  

At the heart of data exchange lies the IDS connector, a central component that grants participants entry into a 

trusted ecosystem and ensures a high level of trust during peer-to-peer data exchange between data providers 

and consumers. This trust is established through the implementation of connectors based on the IDS Reference 

Architecture Model and their independent evaluation, conducted by approved evaluation facilities and the IDSA 
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certification body. This evaluation process, known as IDS certification [200], assesses 156 security criteria (as of 

2023), covering core components and operational environments. 

Apart from IDS-RAM (v4.0), the IDSA provides several complementary assets accessible through their GitHub page 

[201]. These assets include the IDS Rulebook, IDS Testbed, minimum viable data space, component specifications, 

IDS Information Model [202], and open-source components and frameworks that can be leveraged for secure and 

sovereign data exchange. 

6.3.1 Usage Control in IDS 
The concept of Usage Control within the IDS framework is extensively discussed in the position paper titled "Usage 

Control in the International Data Spaces” [203]. In contrast to access control, which focuses on restricting access 

to specific resources, such as services or files, the IDS architecture introduces an additional layer of data-centric 

usage control. This approach aims to enforce usage restrictions for data even after access has been granted. By 

associating policies with exchanged data, the IDS architecture enables continuous control over how messages are 

processed, aggregated, or forwarded to other endpoints. This data-centric approach empowers users to exert 

ongoing control over data flows rather than merely restricting access to services. During configuration, these 

policies assist developers and administrators in establishing appropriate data flows. 

During runtime, usage control enforcement ensures that IDS connectors do not handle data in unintended ways, 

such as forwarding personal data to public endpoints. This mechanism provides system integrators with a tool to 

ensure compliance with security requirements while also offering an audit trail that demonstrates compliant data 

usage. Overall, the data-centric perspective and usage control mechanisms inherent in the IDS architecture 

facilitate secure and sovereign data sharing while granting users greater control over their data flows. 

 

As depicted in the simplified diagram above, usage control within an IDS-compliant dataspace entails the 

implementation of fine-grained policies that dictate how data is handled once access has been granted to data 

consumers. Essentially, the data provider retains the authority to establish rules and policies governing the 

consumption of their data. 
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6.4 Communication protocols in agriculture 

The ability of different systems to seamlessly communicate and exchange data is crucial for achieving effective 

interoperability. This is where communication protocols play a vital role. Communication protocols serve as the 

language and framework that enable systems to understand and interact with one another, regardless of their 

underlying technologies, platforms, or programming languages. By establishing a standardized set of rules and 

formats for data exchange, these protocols ensure smooth and reliable communication between disparate 

systems. 

In the realm of system interoperability, several communication protocols have gained wide acceptance due to 

their effectiveness in facilitating seamless data exchange and integration The most widely used ones are 

summarized in the following sections: 

6.4.1 REST (Representational State Transfer)  
REST is an architectural style that uses standard HTTP methods for communication between client and server 

systems. It leverages the familiar request-response model to exchange data in a platform-independent manner. 

RESTful APIs have become ubiquitous, enabling interoperability between different systems and applications across 

various domains. 

6.4.2 SOAP (Simple Object Access Protocol)  
SOAP is a messaging protocol that allows programs running on different operating systems to communicate with 

each other. It uses XML (eXtensible Markup Language) for message format and relies on various transport 

protocols such as HTTP, SMTP, or TCP. SOAP provides a standardized approach to accessing web services and is 

widely used in enterprise-level integrations. 

6.4.3 MQTT (Message Queuing Telemetry Transport)  
MQTT is a lightweight publish-subscribe messaging protocol designed for resource-constrained devices and 

unreliable networks. It is commonly used in IoT scenarios where efficient and reliable data transmission is 

essential. MQTT facilitates real-time data exchange between devices, sensors, and backend systems, making it 

suitable for applications such as home automation, industrial monitoring, and agriculture. 

6.4.4 AMQP (Advanced Message Queuing Protocol) 
AMQP is an open standard protocol designed for reliable and scalable message-oriented communication. It 

provides a flexible framework for asynchronous messaging, allowing different systems to exchange messages in a 

decoupled manner. AMQP is widely adopted in enterprise messaging systems, IoT deployments, and distributed 

systems that require high-throughput and interoperability. 

6.4.5 OPC-UA (OPC Unified Architecture)  
OPC-UA is a widely used industrial communication protocol that enables interoperability between different 

automation and control systems. It provides a platform-independent and secure means of exchanging data 

between devices, sensors, and applications in industrial settings. OPC-UA supports both real-time and historical 

data access, making it suitable for various industrial applications. These communication protocols form the 

foundation of interoperability between diverse systems, allowing for seamless data exchange, integration, and 

collaboration across different domains and technologies. By adhering to these standards, organizations can unlock 

the potential of their systems, achieve interoperability, and foster innovation in an increasingly connected world. 
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6.5 Intra- and Inter-Dataspace Interoperability 

Intra-data space interoperability focuses on the seamless integration and harmonization of data within a single 

data space or ecosystem. It entails establishing standardized protocols, data formats, and communication 

mechanisms that enable different components and entities within the data space to effectively exchange, share, 

and utilize data. This level of interoperability ensures that data can flow smoothly and be meaningfully interpreted 

and processed by various systems and applications within the same data space. By promoting intra-data space 

interoperability, organizations can optimize their internal data operations, enhance data collaboration, and 

leverage the full potential of the data assets within their own ecosystem. 

Inter-data space interoperability extends beyond the boundaries of a single data space and focuses on 

establishing connections and harmonizing data exchange mechanisms between multiple data spaces or 

ecosystems. It involves defining common standards, protocols, and frameworks that facilitate seamless data 

exchange, integration, and collaboration across different data space instances. The approach taken by every data 

space initiative should include a clear positioning on how it will seamlessly work with other data space instances. 

This ensures that data spaces can effectively communicate, share data, and collaborate, even if they are governed 

by different organizations, operate under different technical architectures, or cater to specific industry 

requirements. By embracing inter-data space interoperability, data spaces can break down barriers, foster 

collaboration between diverse stakeholders, and create a network of interconnected data ecosystems that 

collectively drive innovation and deliver value on a broader scale.  

In conclusion, inter-data space interoperability plays a pivotal role in the AgriDataValue project by enabling 

seamless collaboration, data exchange, and innovation across multiple agricultural data spaces. The project's 

objectives of strengthening the capacities for smart farming, enhancing environmental and economic 

performance, and supporting climate monitoring align closely with the need for inter-data space interoperability. 

By embracing this approach (which is more detailed in [204]), the AgriDataValue project consortium can leverage 

the collective knowledge, resources, and data from diverse data spaces, ultimately leading to more 

comprehensive insights, improved decision-making, and sustainable agricultural practices. Inter-data space 

interoperability ensures that AgriDataValue remains adaptable, scalable, and future-proof, as it can seamlessly 

integrate with other dataspaces both from agriculture and other relevant industries. The technical work being 

carried out under IDSA umbrella (which is called as Communication Protocol) can be seen on IDSA’s Github, under 

Communication Guide repository [201]. 
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7 User and System Requirements 

7.1 User Requirements  

User requirements are generated with the aim of addressing the specific needs and challenges of farmers. 

7.1.1 Crop-based farming 

Table 29: User requirements about crop – based farming 

ID Requirement Description 

REQ.US.01.01 Crop Selection: Users need information and guidance on selecting suitable crops based on 

factors such as climate, soil conditions, market demand, and personal or local preferences 

REQ.US.01.02 Crop Selection: They may require access to data on crop varieties, their adaptability to local 

conditions, yield potential, and resistance to pests and diseases 

REQ.US.01.03 Soil Management: Users require knowledge and tools for assessing and managing soil health 

and fertility 

REQ.US.01.04 Soil Management: They need information on soil testing, nutrient management, organic 

matter improvement, pH adjustment, and soil erosion control practices 

REQ.US.01.05 Soil Management: Guidance on crop rotation, cover cropping, and soil conservation 

techniques may also be required. 

REQ.US.01.06 Irrigation and Water Management: Users need guidance on irrigation methods, scheduling, 

and water management practices to optimize water use efficiency. 

REQ.US.01.07 Irrigation and Water Management: They may require information on the water requirements 

of different crops, soil moisture monitoring techniques, and access to weather data for 

irrigation decision-making. 

REQ.US.01.08 Pest and Disease Management: Users require information on integrated pest and disease 

management practices. 

REQ.US.01.09 Pest and Disease Management: They need guidance on pest and disease identification, 

prevention strategies, biological control methods, and appropriate use of pesticides, 

considering environmental and health considerations 

REQ.US.01.10 Fertilizer and Nutrient Management: Users need recommendations and guidance on 

appropriate fertilizer application rates, timing, and nutrient management practices. 

REQ.US.01.11 Fertilizer and Nutrient Management: They may require information on the nutrient 

requirements of different crops, soil testing, nutrient deficiencies, and the use of organic and 

synthetic fertilizers. 

REQ.US.01.12 Crop Monitoring and Yield Optimization: Users require tools and techniques for monitoring 

crop growth, health, and yield. 
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REQ.US.01.13 Crop Monitoring and Yield Optimization: They may need guidance on crop scouting, disease 

and pest monitoring, nutrient deficiencies identification, and crop-specific management 

practices to optimize yield potential. 

REQ.US.01.14 Market Analysis and Planning: Users may require access to market information, pricing 

trends, and demand-supply dynamics to make informed decisions about crop selection, 

production volumes, and marketing strategies. 

REQ.US.01.15 Market Analysis and Planning: They may need assistance in developing business plans, 

understanding market requirements, and identifying potential marketing channels. 

REQ.US.01.16 Sustainable and Environmental Considerations: Users may prioritize sustainable and 

environmentally friendly farming practices. 

REQ.US.01.17 Sustainable and Environmental Considerations: They may require guidance on conservation 

agriculture, agroecology, organic farming methods, biodiversity conservation, and reducing 

the environmental impact of agricultural activities. 

REQ.US.01.18 Access to Resources and Support: Users may need access to extension services, agricultural 

experts, training programs, and resources such as research findings, best practices, and 

technological innovations 

REQ.US.01.19 Access to Resources and Support: They may require support in terms of financial planning, 

access to credit, and government assistance programs. 

 

7.1.2 Livestock farming 

Table 30: User requirements about livestock farming 

ID Requirement Description 

REQ.US.02.01 The user wants to be informed about how to add, update and delete information regarding 

their farm data. 

REQ.US.02.02 The user wants to be informed about how to make data-driven decisions about reducing 

greenhouse gas emissions. 

REQ.US.02.03 The user wants to be informed about how to make data-driven decisions about reducing 

nitrogen deposition. 

REQ.US.02.04 The user wants to be informed about how to make data-driven decisions about animal health 

and welfare. 

REQ.US.02.05 The user wants to be informed about how to make data-driven decisions about calving 

monitoring. 

REQ.US.02.06 The user wants to be informed on how livestock policies will further incorporate even greater 

demands with respect to the environment and animal/livestock welfare. 

REQ.US.02.07 The user wants to be informed on the proper animal management, proper feed and feeding 

management. 
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REQ.US.02.08 The user wants to be informed on real-time monitoring of livestock and environmental 

conditions, allowing farmers to make data-driven decisions about production parameters and 

disease control 

REQ.US.02.09 The user wants to be informed on the weather forecast for heat waves and drought periods 

as an early warning mechanism 

REQ.US.02.10 The user wants to be informed immediately in case an outbreak occurs that impacts his farm 

through an alarm mechanism 

REQ.US.02.11 The platform should provide a user-friendly interface that is accessible and easy to use for 

farmers with varying levels of technical expertise. 

REQ.US.02.12 The user wants to be informed about new technologies, such as precision agriculture, and 

digital tools, that can help optimize farm management and enhance productivity. 

REQ.US.02.13 The farmer needs to learn good agricultural practices in the face of reducing greenhouse gas 

emissions, nitrogen deposition, animal health and welfare. 

 

7.2 Technical Requirements 

This section provides a detailed description of the technical requirements for each use case. This includes crop-

based farming, livestock farming, and aquaculture farming, and covers IoT devices, satellite imagery specifications, 

equipment requirements etc. Moreover, functional and non – functional requirements are extracted for the 

AgriDataValue platform. 

7.2.1 Weather/Micro-clima related system requirements 
ID Requirement Name Requirement Description 

REQ.FN.01.01 Weather monitoring Weather conditions must be monitored. 

REQ.FN.01.02 Weather Parameters The AgriDataValue platform must store (near)real-time or 
historical data of: 
a) Air temperature 
b) Air Humidity 
c) Wind Direction 
d) Wind Speed 
e) Leaf Wetness 
f) Rain Volume 

REQ.FN.01.03 Additional Parameters The AgriDataValue platform may store (near)real-time or historical 
data of: 
a) Solar irradiance 
b) Relative humidity 
c) Barometric pressure 

REQ.FN.01.04 Calculated Parameters The AgriDataValue platform may store (near)real-time or historical 
data of: 
a) Degree Days 
b) Monthly/Annual Precipitation 

REQ.FN.01.05 Weather impact 
assessment 

The platform must provide weather impact assessment on 
agriculture. 

REQ.FN.01.06   
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7.2.2 Soil related system requirements 
ID Requirement Name Requirement Description 

REQ.FN.02.01 Location • The system should support geolocation services to accurately 

identify and record the location of soil samples or observations. 

• It should provide mapping capabilities to visualize soil data and 

associated location information. 

• The system should allow users to search and select specific 

locations or areas of interest for analysis or management 

purposes. 

• The system should provide tools for conducting location-based 

analysis, allowing users to analyze soil data within specific 

geographic boundaries or regions. 

REQ.FN.02.02 Soil parameters The system should facilitate the analysis of various soil parameters 

such as pH, nutrient content, organic matter, texture, and moisture 

content. 

REQ.FN.02.03 Data Management • The system should have a database to store and manage soil-

related data. 

• It should support efficient data entry, retrieval, and updating of 

soil analysis results. 

• The system should be capable of storing historical data for trend 

analysis and comparison. 

REQ.FN.02.04 Reporting and 
Visualization 

• The system should generate comprehensive reports 

summarizing soil analysis results. 

• It should provide graphical representations and visualizations of 

soil data. 

• The system should allow users to customize and export reports 

in various formats. 

REQ.FN.02.05 Decision Support • The system should provide recommendations or suggestions 

based on the soil analysis results. 

• It should offer insights on suitable crops, fertilizers, or soil 

amendments based on the specific soil conditions. 

• The system should support integration with external resources 

such as soil databases or research findings. 

 

REQ.FN.02.06 Support for advice Based on soil parameters, various agricultural advice can be given to 

optimize crop productivity and soil health. Here are some examples: 

Nutrient Management, pH Adjustment, Irrigation Management, 

Crop Selection, Disease and Pest Management. The system should 

be able to  
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7.2.3 Greenhouse Air Quality related system requirements 
ID Requirement Name Requirement Description 

REQ.FN.03.01 Air Quality Parameters AgriDataValue platform must store real-time or historical data of: 
a) Temperature 
b) Humidity 
c) CO2 

REQ.FN.03.02 Additional parameters 
of interest to be 
measured inside the 
greenhouse 

The AgriDataValue platform may store (near)real-time or historical 
data of inside greenhouse: 
a) Solar radiation 
b) PAR radiation 
c) NVDI 

 

7.2.4 Farm Air Quality related system requirements 
ID Requirement Name Requirement Description 

REQ.FN.04.01 Air Quality Parameters The AgriDataValue platform must store (near)real-time or 
historical data of: 
a) Temperature 
b) Humidity 
c) CO2  
d) CH4 
e) Particulate Matter (PM1.0, PM2.5, PM4, PM10) 
Flow rate in mechanically ventilated barns/ compartments 

REQ.FN.04.02 Additional Parameters The AgriDataValue platform may store (near)real-time or historical 
data of: 
a) N2O 
b) O2 

 

7.2.5 Livestock wellbeing related system requirements 
ID Requirement Name Requirement Description 

REQ.FN.05.01 Air Quality Parameters 
 

The AgriDataValue platform must store (near)real-time or 
historical data of: 
a) Temperature 
b) Humidity 
c) CO2  
d) CH4 
e) Particulate Matter (PM1.0, PM2.5, PM4, PM10) 
f) Flow rate in mechanically ventilated barns/ compartments 

REQ.FN.05.02 Feed Quality The AgriDataValue platform must store (near)real-time or 
historical data of: 
a) quantity 
b) concentrate 
c) roughage 

REQ.FN.05.03 Feed intake Dry Matter intake 

REQ.FN.05.04 Bedding material Refresh rate  

REQ.FN.05.05 Milk production 
parameters 

The AgriDataValue platform must store (near)real-time or 
historical data of: 
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a) Quantity 
b) Fat content 
c) Protein content 
d) Urea 
e) somatic cell count 

REQ.FN.05.06 Weight Weight gain 

REQ.FN.05.07 Moving behavior Data activity tracker 

REQ.FN.05.07 RFID tag Data individual recognition 

REQ.FN.05.08 Camera’s Identify specific behaviour 

 

7.2.6 Terrestrial Geotagged-Photos’ Capturing system requirements 
ID Requirement Name Requirement Description 

REQ.FN.06.01 Image quality The AgriDataValue project should implement toolkit to enhance 
the quality of the image that is being captured by the mobile 
sensors. The toolkit will remove image blur and compensate for 
any external factors (such as motion from hand shake) to improve 
the quality of the image. 

REQ.FN.06.02 Image pre-processing The image pre-processing toolkit could enable segmentation and 
re-orientation of the image to be suitable for performing 
classification process. 

REQ.FN.06.03 Image analytics The image analytics must enable the implementation of 
automated classification of the image for detecting the health of 
the trees, farm crop, and plants.  

REQ.FN.06.04 Knowledge extraction The knowledge extraction component must enable the 
representation of the plant health through a structured knowledge 
base, that is aggregated from the community of experienced users. 

7.2.7 CAP related actions system requirements 
ID Requirement Name Requirement Description 

REQ.FN.07.01 CAP supervisory 
services  

AgriDataValue could provide models for input for the land cover, 
vegetation growing, grassland mowing and land cover change 

REQ.FN.07.02 Weather and livestock 
data 

AgriDataValue could provide models for weather and livestock 
data to determine the optimal composition of feeding habitants 
and brood stock, increasing the farming efficiency 

REQ.FN.07.03 Economic risk 
assessment  

AgriDataValue could develop economic risk assessment models for 
predicting the yield quality. 

REQ.FN.07.04 Comparative 
evaluation and 
monitoring of 
ecological schemes 

AgriDataValue could provide comparative and eco-scheme 
monitoring tools to support the new CAP towards fair income, land 
use protection and environmental care  

REQ.FN.07.05 Food security in the 
face of climate change 
and biodiversity loss 

AgriDataValue could provide tools which will support farmers in 
their day by day activities in crop/ livestock production and getting 
informed decisions 

REQ.FN.07.06 Global transition 
towards competitive 
sustainability from 
farm to fork 

AgriDataValue could provide tool for food traceability and 
innovative business models that turn farmers from data consumers 
to data and knowledge prosumers  
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7.2.8 Satellite Earth Observation Capturing requirements 
ID Requirement Name Requirement Description 

REQ.FN.08.01 EO imagery catalogue The platform (via Sentinel Hub) should provide a catalogue of the 
available EO satellite imagery and EO derived datasets 

REQ.FN.08.02 EO imagery access The platform should provide access to EO satellite imagery and EO 
derived datasets, listed in the catalogue 

REQ.FN.08.03 Ingestion of and 
access to other 
datasets 

The platform (via Sentinel Hub) should allow ingestion of other 
(raster) imagery and datasets, to be accessible via the same API as 
EO satellite imagery and EO derived datasets 

REQ.FN.08.04 EO data processing The platform (via Sentinel Hub) should allow for efficient processing 
(e.g., on the cloud) of EO data, using JavaScript code to define how 
the satellite data shall be processed by Sentinel Hub and what values 
the service shall return 

REQ.FN.08.05 EO Large Scale (raster) 
processing 

The platform (via Sentinel Hub) should allow for efficient large-scale 
processing and creation of analysis ready data-cubes  

REQ.FN.08.06 EO Large Scale (object-
based) processing 

The platform (via Sentinel Hub) should allow for efficient large-scale 
data aggregation to compute statistics over objects (e.g., agricultural 
fields) without having to download images, thus obtaining time-
series data  

 

7.2.9 Data Sovereignty related requirements 
ID Requirement Name Requirement Description 

REQ.FN.09.01 Data Federation The AgriDataValue platform should support data storage in a 

decentralized way. Taking into account data heterogeneity we need 

to offer a platform that offers federation, rather than integration of 

data silos.   

REQ.FN.09.02 Data Openness Data should be associated with self-descriptions or meta-
descriptions so that it is straight forward to identify the actual data 
context 

REQ.FN.09.03 Blockchain & NFTs There should be a way to trace data sharing and data origin. As 
such a blockchain or NFT like technology is needed for offering 
data via a marketplace and smart contracts. 

REQ.FN.09.04 Usage Policies & 
enforcement  

Each participant should be able to define data usage policies and 
attach them to outbound data. Policies might include restrictions, 
such as disallowing persistence of data, or disallowing transfer of 
data to other parties, for example. 

REQ.FN.09.05 Data discoverability & 
observability 

Data should be able to be discovered, accessed and observed via the 

appropriate policies. 

7.2.10  Data Interoperability related requirements 
ID Requirement Name Requirement Description 

REQ.FN.10.01 Data Standardization Ensuring that data exchanged within the project follows 
standardized formats, structures, and definitions to facilitate 
seamless integration, interpretation, and analysis across different 
systems and stakeholders. 
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REQ.FN.10.02 Data Mapping and 
Transformation 

Implementing mechanisms to map and transform data from 
various sources and formats into a common data model or schema, 
allowing for effective data integration and interoperability. 

REQ.FN.10.03 Data Quality 
Assurance 

Establishing protocols and/or mechanisms to ensure the accuracy, 
consistency, completeness of the exchanged data between parties, 
promoting reliable and trustworthy information for decision-
making and analysis. 

REQ.FN.10.04 Data Governance and 
Metadata 
Management 

Implementing governance frameworks and metadata management 
practices to provide clear guidelines, policies, and documentation 
for data sharing, usage control, privacy, security, and provenance 

REQ.FN.10.05 Data Exchange 
Protocols and APIs 

Utilizing standardized data exchange protocols and application 
programming interfaces (APIs) to enable seamless and efficient 
data sharing, integration, and interoperability among different 
data space participants that will consume/provide data.  

 

7.2.11  Federated ML related requirements 
ID Requirement Name Requirement Description 

REQ.FN.11.01 Agent identification 
Provide a mechanism to identify the different agents (or clients) 
involved in the federated learning protocol. 

REQ.FN.11.02 
Global parameters 
communication 

Establish a secure channel and all the related mechanisms needed 
for communicating the global parameters from the server to the 
agents to ensure client privacy 

REQ.FN.11.03 Local training 
Clients (e.g., IoT nodes) should have enough power computation to 
perform their local training on the data they own, so no critical 
information is sent to the server 

REQ.FN.11.04 Aggregated model The server must receive all the local models and aggregate them 

REQ.FN.11.05 Anomaly detection 
Before aggregating the model, the server must check if the local 
models coming from the clients could have suffered attacks, and 
act accordingly 

REQ.FN.11.06 Data preprocessing 
Ensure that all data involved in the Federated Learning approach is 
pre-processed homogeneously 

7.2.12  System level Requirements 
ID Requirement Name Requirement Description 

REQ.FN.12.01 Authentication/ 
Authorization 

The system shall support a mechanism to authenticate/authorize 
users. 

REQ.FN.12.02 IoT data collection  Data should be collected from the farming fields from various IoT 
devices and sensors (agro-meteorological stations, soil sensors, 
animals’ wearable devices, smartphones, etc).  

REQ.FN.12.03 IoT data transmission IoT data should be transmitted to the centralized AgriDataValue 
platform utilizing the best available communications infrastructure 
or a dedicated communication system provided by AgriDataValue. 

REQ.FN.12.04 IoT sensors/devices 
management 

The platform could provide options to manage/view 
sensors/devices. 

REQ.FN.12.05 IoT device connectivity The devices must support connectivity. 

REQ.FN.12.06 Historical data 
processing 

The platform should process historical data.  
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REQ.FN.12.07 Data access The platform should provide access to IoT measurements. 

REQ.FN.12.08 IoT data storage The platform must support storage of precision agriculture and 
weather IoT data in any agreed format. 

REQ.FN.12.09 Processed data 
storage 

The platform shall support the storage of data processed by 
internal AgriDataValue Backend modules. 

REQ.FN.12.10 Satellite image 
processing 

The platform should be able to process Sentinel-1 and Sentinel-2 
images using the ESA SNAP software. 

REQ.FN.12.11 Satellite image 
exposure API 

The platform should be able to expose the processed data using a 
standard Open Geospatial Consortium (OGC) compliant API. 

REQ.FN.12.12 Standard APIs Standard APIs should be used to interface with external platform 
services. 

REQ.FN.12.13 Receiving control 
commands 

The IoT devices could receive control commands from the 
AgriDataValue platform. To support this requirement, 
AgriDataValue communications must enable bi-directional 
communications.  

REQ.FN.12.14 Data reports The platform could provide the ability to export reports in a range 
of formats (e.g., pdf, image, office) of measurements, model 
outcomes etc. 

REQ.FN.12.15 Data geo-visualization The platform could provide geo-visualization of data. 

REQ.FN.12.16 Monitoring The platform should have the ability to run supervised and 
unsupervised algorithms and models for monitoring purposes. 

7.2.13  UC related requirements 
ID Requirement Name Requirement Description 

REQ.FN.13.01   

REQ.FN.13.02 Field status The platform could provide options to view the farming field 
status. 

REQ.FN.13.03 Pest infestation 
identification  

The platform should utilize Deep Learning algorithms to identify 
pest infestation. 

REQ.FN.13.04 Disease outbreaks 
module 

Platform should contain models which proactively predict the 
onset of disease outbreak. 

REQ.FN.13.05 Disease outbreaks 
alert 

Dashboard should alert users about disease outbreaks. 

 

7.2.14 - Non - Functional Requirements 
The Non-Functional requirements of the AgriDataValue project are listed in Table 31, giving a unique identifier, a 
name and a description. 

Table 31: Non – functional requirements of the AgriDataValue platform 

ID Requirement 

Name 

Requirement Description 

REQ.NFN.01 Low latency The required amount of time to transmit data to the AgriDataValue 
platform should be minimized. If communications infrastructure in a 
given location is available, the data transmission should be in real time. 
If communication infrastructure is not available (temporarily or 
permanently due to rural location) the measured data should be stored 
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locally and be transmitted once communications is restored or from the 
location where communication is available. 

REQ.NFN.02 Availability The platform should support high availability. 

REQ.NFN.03 Scalability The platform should be able to integrate additional components, such 
as additional data sources. In addition, the platform should support 
hierarchical architecture. 

REQ.NFN.04 Usability The platform should be developed to be simple, intuitive and efficient 
for the end users and easy to understand.  

REQ.NFN.05 Security & Privacy The platform should be secure and prevent unauthorized access to 
private information. 

REQ.NFN.06 Reliability The platform should indicate potential malfunctions. 

REQ.NFN.07 Power efficient & 
Hybrid electrically 
powered devices 

The platform devices should factor in usage in remote areas with 
limited access to electric power supply and be designed for power 
efficiency. As much as possible, the devices should be designed for 
hybrid power supply options including solar, battery and mains power 
supply.  

REQ.NFN.08 Accuracy New devices should be designed to meet minimum requirements of 
accuracy and functionality provided by existing alternative systems 

REQ.NFN.09 Rapid testing  Test devices should be capable of rapid, non-destructive measurement, 
typically within a few seconds 

REQ.NFN.10 Durability and 
ruggedness 

Installed IoT devices should be designed to withstand harsh conditions 
and usage that is typical of farm equipment and devices.  
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8 Meta-Architecture Considerations 
AgriDataValue considers a multilevel architecture, exploiting key properties of data sovereignty, locality and 

traceability to deliver a secure and trustworthy platform that relies on federation and decentralized processing. 

To achieve its ambitious goals and realize the described use cases, AgriDataValue project will develop an efficient, 

massively distributed, open-source, privacy-preserving, federated AI-based platform, aiming at capturing and 

managing agri-environment data, from a variety of heterogeneous data sources, enabling trustworthy secure 

and GDPR compliant interoperability and data sharing across end-users, industries and organizations.  

As it has been already analysed in section 3 (Figure 3), we consider the AgriDataValue platform (also called, Agri-

Environmental Big Data Space, ADS) is logically split in two main components: a) the ADS Core (ADS-C) where all 

data is stored and processed. And b) the ADS Marketplace (ADS-M) that enables the realization of innovative 

business models and turns end-users (e.g., farmers) to data/ML models prosumers.  

Following a bottom-up approach, AgriDataValue platform utilizes 5 building blocks:  

 
Figure 62: AgriDataValue platform  high level architecture 

a) Decentralized data capture management & in-situ processing tools offer capturing and close-to-the-sources 

processing of data, by exploiting the IoT advancements in communications and computational power and storage 

(varying from IoT sensors and smart phones to GPS-enabled agri-robots) as well as (5G) edge computing. Since IoT 

agri-environment data is typically captured at the edge, AgriDataValue will push processing near to the sources 

following the in-situ processing paradigm, thus distributing the processing load, and reducing the amount of 

transferred data. Moreover, via SINER’s award winning Sentinel DIAS (Data and Information Access Services) 

[205] hub and Copernicus Open Access Hubs (ONDA [206] and CREODIAS [207]), AgriDataValue will gain direct 

access to >44 PB of EO data (EODATA/EODATA+) from Copernicus Sentinels, Landsat and Envisat (well over the 
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normal free data samples) available with instant and local access. By means of in-situ processing, AgriDataValue 

increases the efficiency of processing by online aggregation and by eliminating redundant data, while enhancing 

privacy, since the identity of moving objects can be stored locally and only (pseudo) anonymized location 

information can be transmitted to the Cloud for global, data-intensive analysis operations.  

b) Edge cloud analytics suite. AgriDataValue will realise efficient methods and techniques towards low-latency 

communications and processing of IoT and spatiotemporal data for real-time analytics, as well as high throughput 

processing for batch analysis tasks. This includes advanced partitioning techniques, which comprise a key factor 

for efficient distributed processing and edge-driven FDML based data fusion methods for data upscaling, along 

with techniques that address the shortcoming of existing (5G) edge cloud caching algorithms, which are 

predominantly preoccupied with identifying which data to keep locally and which to remove from the cache. AI-

based caching will enable the prediction of the future use of data by identifying patterns in the read requests and 

use that to determine, which data will be accessed, where and when, before the actual read requests, thus 

facilitating the performance requirements of large-scale analytics. Thus, AgriDataValue will deliver novel 

algorithms for proactive data loading, prefetching, fusion and aggregation based on AI-based predictions and 

forecasts. In parallel, AgriDataValue will apply IoT/GEO Data correlation, analysis and synthesis and XAI predictive 

modelling to improve the end-user experience and increase their trust to the platform advice and 

recommendations.  

c) AI-Based Cloud Platform. AgriDataValue platform will provide federation of multiple IoT and spatiotemporal 

data sources along with decentralized data and knowledge management solutions, enhanced FDML models 

training and high throughput processing for batch data analysis tasks. AgriDataValue platform needs to bridge the 

gap between, on the one hand, applications processing requests and, on the other hand, access to the underlying 

data to be processed. It will combine a highly efficient and decentralized data ingestion mechanism to handle 

semantic interoperability and heterogeneity, pre-processing of data, as well as online and historical data 

aggregation techniques. For the batch data analysis scenarios that require scalability, AgriDataValue platform will 

apply specialized analytics algorithms coupled with advanced indexing techniques tailored for spatiotemporal data 

and trajectories. The platform will be based on knowhow from IDSA which is becoming the “de facto” data spaces 

architecture.  

d) Data Security, Privacy, Traceability & Sharing. AgriDataValue platform offers a vertical “pillar” to cover the 

research and development activities related to data security/ privacy and data sharing. Instead of a “monolithic” 

and custom-made solution, the platform will allow flexible design of processing pipelines, across all layers (from 

edge devices to data centres), moving as little data as possible away from its origin, protecting sensitive data and 

providing a central access point to data insights and visualizations. Data security will be achieved through cyber-

security defence mechanisms, blockchain/DLT policy-based access traceability and identity management 

techniques, while data provenance will be applied in the complete data lifecycle, from data acquisition to delivery. 

With regards to privacy, besides compliance to regulations such as GDPR, AgriDataValue platform will apply 

appropriate anonymization that prevent attackers from disclosing the identity of the data owner, while preserving 

the ability to perform data analysis and extract useful knowledge (e.g. shape and trajectory clustering). To enable 

seamless exchange of data, AgriDataValue platform will support standardized representation formats (e.g. ETSI 

NGSI-LD, OGC for geospatial data). To enhance interoperability even further, programming interfaces will be 

provided to facilitate not only data transformation, but also the exchange of ML models and sharing personalized 

visualizations, including tables, maps, and charts.  

e) Crop/Livestock Monitoring, Land Use, Climate Change Use Cases will include the use case specific apps to 

validate AgriDataValue platform efficiency, along with specialized FDML models to be shared to interested end-

users. 
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8.1 In-Situ Data Collection/Processing Tools 

AgriDataValue platform will utilize (IoT) data collection, processing and analysis devices to monitor production 

and agri-environment conditions. During the project lifetime, these tools will be adapted and enhanced, their 

volume will be increased or even modified following the use cases feedback and most recent development and 

innovations in the fields of sensors. However, the tools that the consortium will bring, develop or utilize in the 

initial project phase are: 

8.1.1 Open-Field Crops’ IoT Sensors Data Capturing Toolbox 
Beyond already installed or off-the-self sensing devices, additional IoT in-situ data capturing devices will be 

installed in AgriDataValue platform’ pilots. One of the main capturing devices will be SynField [205]. SynField™ is 

Synelixis’ (project coordinator) flexible sensing and actuating precision agriculture solution.  

 
Figure 63: Selected SynField IoT sensor options 

It is expected to give a significant head start in AgriDataValue platform, as it already supports more than 50 

different types of sensors to remotely monitor in real-time climate/weather, radiation, soil and leaf conditions, 

ranging from air temperature and barometric pressure to soil moisture/ salinity, irrigation pipes network 

pressure/flow and drilling pressure/ flow/ operational efficiency, while additional meta-sensing indices (e.g. 

evapotranspiration, thermo-hours, dew point) and data analytics are calculated in-situ using edge cloud 

computational resources. SynField also controls irrigation networks, public/private sharing drilling facilities, 

fertilization and anti-frost policies, using AI models and rules, either fully or partially automated. SynField features 

a GPS sensor to enable geotagged information (and as anti-theft protection) and communicates with the cloud 

using 3G/4G/NB-IoT cellular technology. A Bluetooth interface is available for system set-up and management and 
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a LoRA interface may coordinate an ad-hoc network of peripherals, covering even locations where the cellular 

network is weak or not available, while reducing the communications’ cost. SynField™ is already deployed in 8 

countries (i.e. Greece, Italy, Spain, Denmark, Serbia, Germany, Finland and India). Additional nodes will be installed 

during AgriDataValue platform lifetime, while additional wireless interfaces (e.g. WiFi, sigfox, zigbee) and 

additional sensors will be integrated following the most recent development and innovations in the fields of 

communications and sensors.  

8.1.2 Greenhouse/Farm Air Quality IoT devices 
AgriDataValue’ will go beyond crop monitoring to utilize already available data, while collecting and upgrading 

new data from greenhouses’ crop and livestock farms production. GHG, such as carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) from crop and livestock enteric fermentation are of paramount importance. Synelixis 

SynAir™ [206] is a versatile sensor platform that can accommodate a multitude of Air Quality sensors, including 

CO, CO2, CH4, N2O, NO2, NH3, O2, O3, Alcohol detection, Volatile Organic compounds (VOC) and Particulate Matter 

(PM1.0, PM2.5, PM4, PM10). Synelixis SynAir [206] will be installed in selected pilots, while additional sensors will be 

integrated during the project lifetime (Figure 64).  

One of the key benefits of air quality sensors is that they can provide real-time data on air quality conditions. This 
allows farmers to identify areas of the operation that are generating high levels of pollution and take corrective 
action. 

  
Figure 64:SynAir indoor (Greenhouse) and outdoor Installation 

8.1.3 Animals’ Wearable IoT Data Capturing Toolbox 
The Federation of Veterinarians in Europe advises [207] all involved in animal farming to use animal-based 
indicators for assessing the welfare conditions of farmed animals on a routine basis. The regular monitoring of 
animal welfare allows the early identification of animal health and welfare issues at farm level and timely 
implementation of corrective measures. The adoption of suitable tools/protocols for the implementation of 
routine checks at adequate frequency is fundamental to improve responsiveness allowing the prevention and/or 
early identification of animal health and welfare issues. Technological tools to support data collection and analysis 
exist and are in constant development. However, not all of these devices are suitable or applicable for 
AgriDataValue defined scenarios. During the project, we will analyse existing solutions and select the most 
appropriate wearable devices for AgriDataValue applications. The most obvious candidates are:  

• GPS animal collars tracking animals and showing their location in real time 

• Ear tag sensors for measuring behavioural indicators like posture, gait, vocalization, and external 
temperature which can help in evaluating the health and welfare of animals.  

• Remote animal health monitoring systems 

• ECG systems which are used on racing horses, etc. 
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Typical example of a GPS animal collar is shown in 

Figure 65. AgriDataValue’ will also utilize off-the-

shelf smart neck collars and ear tags for cows/pigs, 

including 3 axis accelerometers and GPS trackers, 

along with cameras to get insights of the 

health/welfare, activity, and livestock calving status. 

All these measurements will be combined with the 

temperature/humidity data and outdoor wind 

sensors to calculate the emissions concentration. 

8.1.4 GreenFeeds and multi-gas analyzers 
There are many different measurement methods available to measure greenhouse gases. ILVO also has 6 

GreenFeed (C-lock) feeders, which are special concentrate feeders that measure the emissions of the cow on a 

relative scale during feeding. The dairy cows in the ILVO free stall barn can voluntarily visit these GreenFeeds 

throughout the day. This allows methane emissions from larger groups of cows to be measured under practical 

conditions. Recently, ILVO also has some mobile GreenFeeds available for methane measurements on the pasture. 

Manure emissions are measured with multi-gas analysers. 

8.1.5 Terrestrial Geotagged-Photos’ Data Capturing Toolbox 
The AgriDataValue Terrestrial Geotagged-Photos’ Data Capturing Toolbox will enable farmers, agronomists and 

stakeholders to capture and upload geotagged photos from their crop or livestock and receive automated, AI-

based feedback and technical recommendations on the health of the parcels and potential bugs, diseases, pests, 

weeds, fungi, fungal-like organisms, bacteria, phytoplasmas, viruses, viroids, nematodes and parasitic, along with 

guidance on how they could deal with them. The sensing and data collection process will be supported by a mobile 

application implemented in both Android and iOS framework that will allow end users to review related content 

about their parcels and receive notifications and recommendation in a user-friendly Augmented Reality (AR) 

framework.  

 
Figure 66: Geotagged Photos App 

Moreover, based on XAI technology, the app will provide explanation of the recommendations and relevant cases, 

to increase farer trust and confidence on the recommendation. The complete process will be implemented 

utilizing a smart mobile as capturing device, the (5G) edge cloud as processing node offloading computational 

heady processes and AgriDataValue platform ML model/data. Based on advanced security and multifaceted 

anonymization, validation, reliability and traceability technology, the user will have the option to either make the 

captured photos public or enable just the dissemination of the AI result as a warning, recommendation or 

inceptive-based knowledge sharing. 

  
Figure 65: Typical example of a GPS animal smart Collar 
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8.2 Regional/Global Data Collection/Processing Tools 
In-site (IoT) sensor data collection/processing tools will be combined and upscaled with regional and global tools:  

8.2.1 Aerial Geotagged-Photos’ Data Capturing Toolbox 
The Aerial Geotagged-Photos’ Data Capturing Toolbox will be based on SLG drone’s precise plant-level data 

platform and SINER technology. The toolbox represents a combination of tools that are employed towards the 

conduction of drone flights in targeted areas of interest (i.e. fields of small, narrow or elongated land parcels 

and/or areas with significant cloud cover). In parallel to drone’s GNSS supported/automated flight control, the 

drone will be equipped with both a visual and a multispectral camera, to capture Blue (450 nm ± 16 nm), Green 

(560 nm ± 16 nm), Red (650 nm ± 16 nm), Red edge (730 nm ± 16 nm) and Near-infrared (840 nm ± 26 nm) images. 

Drone’s cameras will go through a rigorous calibration process where radial and tangential lens distortions will be 

measured, so that the distortion parameters gathered to be saved into each image’s metadata, letting post-

processing software adjust uniquely for every user.  

 
Figure 67: Aerial Geotagged Toolbox 

The toolbox will play a significant role in calculating accurate Vegetation Indexes such as NDRE and NDVI, enabling 

farmers to make timely and informed decisions on crop treatment, lowering costs, saving resources, and 

maximizing yields. In combination with satellite EO data, the toolbox via routine inspections will support accurate 

monitoring such as land usage, riparian vegetation, forest health and biomass. 

8.2.2 Satellite Earth Observation Data Capturing Toolbox 
AgriDataValue platform will capitalize on recent results of ESA’s SEN4CAP and H2020 EO4AGRI and DIONE projects 

and upscale data captured by IoT in-situ and obtained by drones’ tools with EODATA. The toolbox will be based 

on Sentinel-1 and Sentinel-2 (A and B) Copernicus Contributing Missions (CCM), with a high revisit time of 2-3 days 

at mid-latitudes, enabling the observation of significant changes in canopy growth (e.g. new phenological stage or 

biotic and abiotic stresses). Sentinel-2 features 13 different spectral bands, 10 of which being particularly 

interesting for the computation of vegetation indices. In parallel, Sentinel-5 will be considered complimenting 

Sentinel-1 on climate change, as Sentinel -1 is observing among others the forest, water and soil management, 

while Sentinel-5 is focused on air quality and composition-climate interaction with the main data products being 

O3, NO2, SO2 and aerosols. Sentinel-5 will also deliver quality parameters for CO, CH4, and stratospheric O3 with 

daily global coverage for climate, air quality, and ozone/surface UV applications. The toolbox will exploit DIAS 

(Data and Information Access Services) in its fullness, through Sentinel DIAS Hub and Copernicus Open Access 

Hubs (ONDA, CREODIAS and MUNDI) to gain access not only to more than 44 PB of EODATA/ EODATA+ from 

Copernicus Sentinels, Landsat and Envisat available with instant and local access, but also their services, i.e. the 

data catalogue and Copernicus Land (CLMS) and Atmosphere (CAMS) Monitoring Services.  

http://esa-sen4cap.org/
https://eo4agri.eu/
https://dione-project.eu/
https://www.sinergise.com/en/news/sentinel-hub-powering-copernicus-data-and-information-access-services
https://www.onda-dias.eu/cms/
https://creodias.eu/
https://mundiwebservices.com/
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Figure 68: Evia, Greece 2021 Wildfire (Copernicus Sentinel-2) 

Moreover, by exploiting existing GEOSS datasets, metadata and semantic search tools based on AI, and build upon 

prior knowledge, AgriDataValue platform will enable added-value services on Climate Change adaptation and 

mitigation with minimal new data collection activities. 

8.2.3 Upscaling in-situ/regional/global datasets 
AgriDataValue platform will combine and upscale in-site, regional and global IoT and geospatial datasets to 
provide more accurate results and images with better resolution. As an example, with respect to Sentinel-2, 
though it provides images of high resolution, still it is not impossible to obtaining pure pixels of a crop. Indeed, 
images are made up of mixed pixels (crop/soil or crop/cover crop when the inter-row is grassed). Moreover, 
depending on the location under study, cloudy weather conditions can be of great concern as they limit the 
number of usable images. It should also be stressed that to our knowledge, beyond SEN4CAP tools, the end-to-
end chain (a.k.a. to process and correct) Sentinel-2 images considering new services for dynamic crops and climate 
change monitoring has not yet been sufficiently tested.  

 
Figure 69: Upscaling Sentinel-2 Images 

AgriDataValue platform will introduce novel image processing techniques, ML-based pre-/post-processing and 
fusion of LPIS/GSAA datasets, GEOSS/Copernicus DIAS-sourced data with VHR (Very High Resolution) EO and 
drone-obtained optical and SAR multispectral data to improve the resolution below 0.5m. This will enable the 
provision of valuable tools for new services. As examples, AgriDataValue platform tools will 

• enhance resolution maps of permanent pastures, crop-types, non-productive EFA (Ecological Focus Areas) 
types (i.e. fallow land, buffer strips, hedges) and farmers’ activities (e.g. grassland mowing/ploughing),  

• calculate quite important vegetation indexes, such as FAPAR, GNDVI/NDVI, EVI,  

• support the assessment of bio-geophysical parameters such as Leaf Area Index (LAI), chlorophyll vegetation 
index (CVI), Leaf Chlorophyll Content (LCC) and Leaf Cover (LC),  

• calculate soil related parameters, such as Soli-Adjusted Vegetation Index (SAVI) and Soil-related Indicators  

• analyse Disaster Resilience and climate change effects.  

Moreover, we will significantly contribute to CAP supervision services by providing input for land cover, vegetation 
growing, grassland mowing and land cover change. AgriDataValue platform will also combine and upscale weather 
and livestock data, related to animal’s habits, birth, health and welfare, to determine the optimal composition of 



HORIZON Research and Innovation Actions - 101086461: AgriDataValue 

Deliverable D1.1: Definition & analysis of use cases and system requirements V1 

 

Page 157 of 224 

feeding habitants and brood stock, while increasing the farming efficiency, measured in milk, meat and manure 
to be used in electricity generation as biogas and finally as compost/fertilizers.  

 

Figure 70:Upscaling in-situ/regional/global datasets Tools  

AgriDataValue platform will offer a complete toolset (Figure 70) for correlation of IoT and geospatial data, covering 
processing, analysis, synthesis and use of data, ranging from generic spatial, EO satellite data geotagging up to 
calculation of specific parameters such as buffer strips, EFA indices, and crop diversification, while integrating 
SEN4CAP and EO4AGRI toolbox.  
It is important to note that AgriDataValue platform will focus on (real-time) on-demand data upscaling, based 

on specific application requirements. In this way, end-users will be able to utilize the most recent in-situ/ regional/ 

global data, based on their instant needs, and not generic historical data. To face data interoperability, we plan to 

utilize Federated Deep ML (FDML) thus: a) initially ML models will be pre-train in a fully distributed manner, while 

avoiding data transferring or translation wherever possible, b) the pre-trained ML models will be aggregated to 

create enhanced FDML models, c) FDML models will be utilized at the edge cloud with minimal processing 

requirements. This will be achieved by offloading, wherever possible, processing intensive tasks, such as FDML 

aggregation on the edge cloud, while utilizing semi-trained ML models and on-device intelligence. In case data 

translation can’t be avoided, an ontology-based semantic data model will be adopted and extended using existing 

vocabularies (i.e. agroRDF, GACS, EPCIS), along with real-time translation hosted at the edge, engaging 

standardised solutions such as OMA Next Generation Sensors Initiative (NGSI) and ETSI NGSI-LD. 

8.3 Federated Deep ML (FDML) 

Federated Deep Machine Learning (FDML) is a distributed approach to Machine Learning (ML) that has gained 

momentum in recent years since it allows training and serving Artificial Intelligence (AI) models on decentralized 

data sources. As can be seen in the image below, an FDML approach consists of two components:  

• Server: receives local model updates (weights or gradients) from the clients and aggregates them to generate 

a global model. This global model is then sent back to the clients to perform on-device inference.  
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• Clients: entities or devices with computation capabilities that possess sensitive data. These clients train AI 

models with their local data and send their model updates to the server. Finally, they update their local model 

with the aggregated model generated by the server. 

 

Figure 69: Federated Machine Learning architecture 

The deployment of an FDML scheme has several advantages over traditional centralized machine learning ones. 

On the one hand, FDML clients do not have to share any private or sensitive data for training the global model. 

This not only involves an enhancement in terms of privacy and security but also encourages interoperability 

between entities reluctant to share their data. On the other hand, FDML assumes that the training and inference 

processes are performed locally on each device. This implies the parallelization of both procedures and increments 

the scalability of the ML solution. These advantages are the reason why FML has gained momentum, especially in 

scenarios where i) data privacy is a critical requirement, and/or ii) multiple sources of data coexist. Agri-

environmental and agri-food supply chain applications are clear examples of scenarios where the adoption of FML 

approaches has become an essential object of research [208] [209, 210, 211, 212], since it is a domain that can 

extremely benefit from the two main advantages stated before. First, the agriculture domain is especially 

vulnerable to data silos: oftentimes, the data generated to test aspects such as food quality is kept private and 

isolated by the institutions gathering them. Secondly, because of this isolation, any data sharing becomes 

impossible, which in turn removes any possibility of scaling the insights extracted from the data under study to a 

macroscopic level [208].  

However, the application of FDML schemes in the agriculture sector has created new potential risks, namely 

adversarial attacks, where an attacker can cheat the server by impersonating a client, which in the end can result 

in data leakage or poisoning attacks [211, 212]. As a result of this, in recent years there has been a lot of research 

towards i) avoiding private data leakage at any stage of the machine learning pipeline, including model training, 

data sharing, and model serving, through Privacy-Preserving Federated Machine Learning (PPML) [212]; and ii) 

minimizing poisoning attacks by using generative methods, such as Generative Adversarial Networks or 

Normalizing Flows [213]. 

In this context, AgriDataValue will provide an AI-enabled Decision Support System (DSS) adjusted to end-users’ 

constraints and specific requirements of the project UCs, where FDML, PPML, and state-of-the-art generative 

methods will be combined to enhance privacy and security in the federated network, exploring differential 

privacy-based algorithms such as Private Aggregation of Teacher Ensembles (PATE) [214]. In this way, 

AgriDataValue will leverage secure edge computing techniques and aggregation primitives to privately and 

securely combine local training to update a global model.  
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8.4 Blockchain Technology  

Based on initial research, there are many efforts, mainly RTD and some commercial ones, of introducing 

Blockchain in the food supply chain. The main objectives of such efforts have been:  

• the introduction of transparency and traceability in the production line,  

• the trustworthy monitoring, immutable cataloguing and control of vital parameters through the whole 

product life span,  

• comforting the consumer concerns about the origin, certification and production process details.  

In fact, the integration of Blockchain ledger offers a replacement of a central database system and expunge its 

subsequent single point of failure vulnerability. It also promotes trust among supply chain parties since data 

falsification is close to impossible, due to Blockchain data immutability and makes the traceability retrieval process 

more trustworthy.  

Although it is a relatively new technology, approximately one of three food traceability frameworks utilize 

blockchain technology [209] [210] [211]. On the other hand, the application of Blockchain still faces challenges 

related to: a) performance and scalability issues, since most of the major public Blockchain networks 

implementations are not designed towards commercial efficiency; b) data privacy concerns, especially in the case 

of public ledgers, where corporate data are available to all participants; c) lack of central authority that can enforce 

global policies; d) concerns regarding energy-efficient operation. [212] [213] [214] [215] [216]  
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9 Conclusion 
AgriDataValue presents a comprehensive and innovative approach to revolutionize the agricultural sector by 

leveraging advanced technologies and data-driven solutions. Throughout the project, significant advancements 

will be made in several key areas, including data integration and interoperability, DSSs, precision agriculture, 

remote sensing, IoT, and blockchain technology. 

The project recognizes the immense potential of data in agriculture and emphasizes the need for efficient data 

collection, processing, and analysis. By integrating heterogeneous data sources from various stakeholders, such 

as farmers, researchers, and agri-food supply chain actors, AgriDataValue aims to create a unified data ecosystem 

that enables seamless data sharing, collaboration, and knowledge exchange. The project's emphasis on data 

interoperability and standardisation ensures that diverse datasets can be effectively integrated, leading to more 

comprehensive and valuable insights for all stakeholders involved. 

One of the key outcomes of AgriDataValue is the development of advanced DSSs that empower farmers and other 

actors in the agricultural value chain to make informed decisions. By utilizing ML, predictive analytics, and 

optimization techniques, these systems provide real-time and personalized recommendations on crop 

management, resource allocation, and risk mitigation. The integration of historical and real-time data, combined 

with sophisticated models, enables the generation of accurate and actionable insights, leading to improved 

productivity, resource efficiency, and sustainability in agriculture. 

Precision agriculture is a crucial aspect of AgriDataValue. By harnessing the power of IoT sensors, satellite imagery, 

and drone technology, the project aims to enable precise and site-specific agricultural practices. From soil 

monitoring and crop health assessment to irrigation management and yield prediction, precision agriculture 

techniques contribute to optimized resource usage, reduced environmental impact, and increased profitability for 

farmers. The integration of regional and global data collection and processing tools, such as aerial geotagged 

photos and satellite earth observation, further enhances the accuracy and scope of the generated insights 

The AgriDataValue project places a strong emphasis on remote sensing and Earth observation (EO) technologies 

as invaluable tools for agricultural monitoring and analysis. By leveraging the capabilities of satellite-based EO 

platforms like Sentinel, MODIS, and Landsat, the project enables frequent and comprehensive monitoring of 

vegetation growth, land usage, forest health, climate change, and air quality. The fusion of EO data with in-situ 

and drone-obtained data enhances the resolution and accuracy of the generated information, supporting diverse 

applications such as land cover mapping, vegetation index calculation, assessment of bio-geophysical parameters, 

and disaster resilience analysis. 

Furthermore, the project recognizes the potential of blockchain technology in enhancing transparency, 

traceability, and trust in the food supply chain. By leveraging blockchain's distributed ledger system, 

AgriDataValue aims to overcome the limitations of centralized databases and enable secure and immutable 

tracking of vital parameters throughout the product lifecycle. Blockchain technology ensures data integrity, 

reduces the risk of data falsification, and fosters trust among supply chain actors and consumers. However, 

challenges related to performance, scalability, data privacy, and the absence of a central authority remain to be 

addressed in the implementation of blockchain solutions in the agriculture sector. 

The AgriDataValue project has not only made significant progress in the integration of various technologies but 

has also recognized the importance of collaboration, knowledge sharing, and stakeholder engagement. By actively 

involving farmers, researchers, industry experts, and policymakers, the project promotes a holistic and inclusive 

approach to agriculture, fostering innovation and sustainability. The project's emphasis on real-time, on-demand 
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data upscaling and federated deep machine learning ensures that end-users can access the most recent and 

relevant data, tailored to their specific needs, while preserving privacy and security. 

Overall, the AgriDataValue project signifies a transformative shift in the agricultural sector, where data-driven 

approaches, advanced technologies, and collaborative frameworks converge to address the challenges and unlock 

the opportunities in modern agriculture. By integrating diverse datasets, developing advanced decision support 

systems, promoting precision agriculture and remote sensing, and exploring blockchain technology, the project 

paves the way for a more sustainable, efficient, and resilient agricultural ecosystem. The outcomes of the project 

have the potential to drive innovation, optimize resource utilization, mitigate risks, and ultimately contribute to 

global food security and environmental stewardship. 

While the AgriDataValue project has achieved significant milestones, it also highlights areas for future research 

and development. Further exploration of emerging technologies like artificial intelligence, robotics, and the 

Internet of Things can enhance automation and efficiency in agricultural operations. Continued efforts in data 

standardization, interoperability, and privacy protection will enable seamless data exchange and collaboration 

across different platforms and stakeholders. Moreover, the integration of socio-economic factors, market 

dynamics, and policy frameworks can facilitate the adoption and scalability of data-driven solutions in the 

agricultural sector. 

In conclusion, the AgriDataValue project serves as a catalyst for the transformation of agriculture into a data-

powered, knowledge-intensive domain. By embracing the potential of data integration, advanced analytics, and 

emerging technologies, the project aims to address the pressing challenges faced by the agricultural sector and 

unlock new avenues for sustainable development. Through collaboration, innovation, and stakeholder 

engagement, the project contributes to a future where agriculture is not only productive and profitable but also 

environmentally conscious, socially inclusive, and resilient to global changes. The AgriDataValue project sets the 

stage for a data-driven revolution in agriculture, where information becomes the most valuable crop, and data-

driven insights sow the seeds of prosperity and sustainability for generations to come.
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11 Annex: Literature Analysis 

11.1 Adoption of smart farming technology, benefits, and barriers 

Table 32 offers a summary of using smart farming technology, and the barriers to increasing the adoption rate. 

The review identified that the use of digital technologies in farming allows a decrease in energy consumption, 

water and pesticide use. The idea is that digital technologies allow farmers to optimize input use and thus emit 

fewer pollutants that have negative impacts on the environment. Although digital technologies seem to have a 

positive impact on the environment, there is a gap in research on impacts on the entire agricultural sector, notably 

towards whether digital tools in agriculture improve knowledge about environmental practices [124]. 

Table 32. Summary of studies that discussed environmental benefits of digital technologies on the farm 

Reference Technology 
Country or 

Region 
Results 

Ahmad, L., Mahdi, S.S. (Eds.), Satellite Farming: An 

Information and Technology Based Agriculture. Springer 

International Publishing, Cham, pp. 129–138. 

all digital 

technologies 

World  

Anisi, M.H., Abdul-Salaam, G., Abdullah, A.H., 2015. A 

survey of wireless sensor network approaches and their 

energy consumption for monitoring farm fields in 

precision agriculture. Precis. Agric. 16, 216– 238. 

https://doi.org/10.1007/s11119-014-9371-8 

all digital 

technologies 

Malaysia less energy 

consumption 

Bauckhage, C., Kersting, K., 2013. Data Mining and 

Pattern Recognition in Agriculture. KI - Künstl. Intell. 27, 

313–324. https://doi.org/10.1007/s13218-013-0273-0 

data meaning Germany  

Bill, R., Nash, E., Grenzdörffer, G., 2012. GIS in 

Agriculture, in: Kresse, W., Danko, D.M. (Eds.), Springer 

Handbook of Geographic Information, Springer 

Handbooks. Springer Berlin Heidelberg, Berlin, 

Heidelberg, pp. 461–476. https://doi.org/10.1007/978-3-

540-72680-7_24 

all digital 

technologies 

  

Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, 

G., Fernández-Quintanilla, C., 2009. Improving weed 

pressure assessment using digital images from an 

experience-based reasoning approach. Comput. 

Electron. Agric. 65, 176–185. 

https://doi.org/10.1016/j.compag.2008.09.001 

image Spain  

Casa, A. de la, Ovando, G., Bressanini, L., Martínez, J., 

Díaz, G., Miranda, C., 2018. Soybean crop coverage 

estimation from NDVI images with different spatial 

resolution to evaluate yield variability in a plot. ISPRS 

Journal of Photogrammetry and Remote Sensing 146, 

image Argentina less water used 
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531–547. 

https://doi.org/10.1016/j.isprsjprs.2018.10.018 

Dehnen-Schmutz, K., Foster, G.L., Owen, L., Persello, S., 

2016. Exploring the role of smartphone technology for 

citizen science in agriculture. Agron. Sustain. Dev. 36, 25. 

https://doi.org/10.1007/s13593-016-0359-9 

application/ 

software 

UK, France Apps and 

smartphones 

improve 

environmental 

practices 

Edan, Y., Han, S., Kondo, N., 2009. Automation in 

Agriculture, in: Nof, S.Y. (Ed.), Springer Handbook of 

Automation, Springer Handbooks. Springer Berlin 

Heidelberg, Berlin, Heidelberg, pp. 1095–1128. 

https://doi.org/10.1007/978-3-540-78831-7_63 

all digital 

technologies 

OCDE 

countries 

 

Ge, Y., Thomasson, J.A., Sui, R., 2011. Remote sensing of 

soil properties in precision agriculture: A review. Front. 

Earth Sci. 5, 229–238. https://doi.org/10.1007/s11707-

011-0175-0 

RS world  

Gonzalez-de-Soto, M., Emmi, L., Benavides, C., Garcia, I., 

Gonzalez-de-Santos, P., 2016. Reducing air pollution with 

hybrid-powered robotic tractors for precision 

agriculture. Biosyst. Eng. 143, 79 

robotic Spain Robotic tractors use 

less fuel and thus 

emit less carbon 

Grilli, G., Borgonovo, F., Tullo, E., Fontana, I., Guarino, 

M., Ferrante, V., 2018. A pilot study to detect coccidiosis 

in poultry farms at early stage from air analysis. Biosyst. 

Eng., Advances in the Engineering of Sensor-based 

Monitoring and Management Systems for Precision 

Livestock Farming 173, 64–70 

application/ 

software 

Italy  

Gutiérrez, P.A., López-Granados, F., Peña-Barragán, J.M., 

Jurado-Expósito, M., Hervás-Martínez, C., 2008. Logistic 

regression product-unit neural networks for mapping 

Ridolfia segetum infestations in sunflower crop using 

multitemporal remote sensed data. Comput. Electron. 

Agric. 64, 293–306. 

https://doi.org/10.1016/j.compag.2008.06.001 

application data 

analysis 

Spain less herbicide used 

Hajjaj, S.S.H., Sahari, K.S.M., 2014. Review of Research in 

the Area of Agriculture Mobile Robots, in: Mat Sakim, 

H.A., Mustaffa, M.T. (Eds.), The 8th International 

Conference on Robotic, Vision, Signal Processing & 

Power Applications, Lecture Notes in Electrical 

Engineering. Springer Singapore, pp. 107–117. 

robotic world  

Jain, L., Kumar, H., Singla, R.K., 2014. Localization of 

Information Dissemination in Agriculture Using Mobile 

Networks, in: Satapathy, S.C., Avadhani, P.S., Udgata, 

S.K., Lakshminarayana, S. (Eds.), ICT and Critical 

Infrastructure: Proceedings of the 48th Annual 
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Convention of Computer Society of India- Vol I, Advances 

in Intelligent Systems and Computing. Springer 

International Publishing, pp. 409–415. 

Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X., 

2017. A review on the practice of Big Data analysis in 

agriculture. Comput. Electron. Agric. 143, 23–37. 

https://doi.org/10.1016/j.compag.2017.09.037 Karner, 

E., 2017. The Future of Agriculture is Digital: Showcasting 

e-Estonia. Front. Vet. Sci. 4, 151. 

https://doi.org/10.3389/fvets.2017.00151 

Big Data world  

Khanal, S., Fulton, J., Shearer, S., 2017. An overview of 

current and potential applications of thermal remote 

sensing in precision agriculture. Comput. Electron. Agric. 

139, 22–32. 

https://doi.org/10.1016/j.compag.2017.05.001 

RS world  

Langner, H.-R., Böttger, H., Schmidt, H., 2006. A Special 

Vegetation Index for the Weed Detection in Sensor 

Based Precision Agriculture. Environ. Monit. Assess. 117, 

505–518. https://doi.org/10.1007/s10661-006-0768-3 

image Germany  

Lokers, R., Knapen, R., Janssen, S., Randen, Y. van, 

Jansen, J., 2016. Analysis of Big Data technologies for use 

in agro-environmental science. Environ. Model. Softw. 

84, 494–504. 

https://doi.org/10.1016/j.envsoft.2016.07.017 

data EU  

Lovato, G.D., Vale, M.M. do, Oliveira, V. de, Klein, D.R., 

Branco, T., Lovato, G.D., Vale, M.M. do, Oliveira, V. de, 

Klein, D.R., Branco, T., 2017. Application of a precision 

nutrition tool for growing and finishing pigs. Rev. Bras. 

Zootec. 46, 755–759. https://doi.org/10.1590/s1806-

92902017000900007 

data learning Brazil  

Mesas-Carrascosa, F.J., Verdú Santano, D., Meroño, J.E., 

Sánchez de la Orden, M., García-Ferrer, A., 2015. Open 

source hardware to monitor environmental parameters 

in precision agriculture. Biosyst. Eng. 137, 73–83. 

https://doi.org/10.1016/j.biosystemseng.2015.07.005 

DSS Spain  

Nie, P.C., Wu, D., Zhang, W., Yang, Y., He, Y., 2010. 

Hybrid Combination of GIS,GPS,WSN and GPRS 

Technology in Modern Digital Agriculture Application 

[WWW Document]. Adv. Mater. Res. 

https://doi.org/10.4028/www.scientific.net/AMR.108-

111.1158 

all digital 

technologies 

  

O’Shaughnessy, S.A., Rush, C., 2014. Precision 

Agriculture: Irrigation, in: Van Alfen, N.K. (Ed.), 

Encyclopedia of Agriculture and Food Systems. Academic 

all digital 

technologies 

USA less water used 



HORIZON Research and Innovation Actions - 101086461: AgriDataValue 

Deliverable D1.1: Definition & analysis of use cases and system requirements V1 

 

Page 180 of 224 

Press, Oxford, pp. 521–535. 

https://doi.org/10.1016/B978-0-444-52512-3.00235-7 

Okayasu, T., Nugroho, A.P., Arita, D., Yoshinaga, T., 

Hashimoto, Y., Tachiguchi, R., 2017. Sensing and 

Visualization in Agriculture with Affordable Smart 

Devices, 2017 

all digital 

technologies 

 better environmental 

performance 

Palaniswami, C., Gopalasundaram, P., Bhaskaran, A., 

2011. Application of GPS and GIS in Sugarcane 

Agriculture. Sugar Tech 13, 360–365. 

https://doi.org/10.1007/s12355-011-0098-9 

GIS India  

Santos, V.B. dos, Silva, E.K.N. da, Oliveira, L.M.A. de, 

Suarez, W.T., 2019. Low cost in situ digital image 

method, based on spot testing and smartphone images, 

for determination of ascorbic acid in Brazilian Amazon 

native and exotic fruits. Food Chem. 285, 340–346. 

https://doi.org/10.1016/j.foodchem.2019.01.167 

image Brazil  

Shrivastava, S., Singh, S.K., Hooda, D.S., 2017. Soybean 

plant foliar disease detection using image retrieval 

approaches. Multimed. Tools Appl. 76, 26647–26674. 

https://doi.org/10.1007/s11042-016- 4191-7 

application data 

analysis 

India  

Todde, G., Caria, M., Gambella, F., Pazzona, A., 2017. 

Energy and Carbon Impact of Precision Livestock Farming 

Technologies Implementation in the Milk Chain: From 

Dairy Farm to Cheese Factory. Agriculture 7, 1–11. 

all precision 

technologies 

Italy Real-time milk 

analysis decrease 

energy use by 44% 

on the farm and by 

69% in the entire 

production chain 

Vranken, E., Berckmans, D., 2017. Precision livestock 

farming for pigs. Anim. Front. 7, 32–37. 

https://doi.org/10.2527/af.2017.0106 

application/ 

software 

Belgium better practices 

Wright, D., Hammond, N., Thomas, G., MacLeod, B., 

Abbott, L.K., 2018. The provision of pest and disease 

information using Information Communication Tools 

(ICT); an Australian example. Crop Prot. 103, 20–29. 

ttps://doi.org/10.1016/j.cropro.2017.08.023 

network/media Australia better knowledge 

 

11.2 Indicative References to Economic Benefits of Smart Farming 

Digital Technologies  

The following Table 33 offers a summary of studies of economic benefits of smart farming and the key insights on 

economic benefits from digital technologies used in agriculture. Contrary to the studies on the environment where 

there was a certain consensus on the positive impact of smart technologies, there is a lack of studies illustrating 

the profitability of digital technologies in agriculture [124]. 
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Table 33. Summary of the studies discussing economic benefits of digital technologies 

Reference Technology 
Country or 

Region 
Results 

Anabel, N.J., Mohan, P., Rajkumar, R., 2018. Role of hub 

and spoke model for ICTs in agriculture. CSI Trans. ICT 6, 

231–243. https://doi.org/10.1007/s40012-018-0207-y 

  
more knowledge 

spillover 

Bai, Hongwu Zhou, Guanghong Hu, Yinong Sun, Aidong Xu, 

Xinglian Liu, Xianjin Lu, Changhua, 2017 
RFID China 

The reading capacity of 

RFID has the highest cost 

in the traceability chain 

Barnes, A.P., Soto, I., Eory, V., Beck, B., Balafoutis, A., 

Sánchez, B., Vangeyte, J., Fountas, S., van der Wal, T., 

Gómez-Barbero, M., 2019. Exploring the adoption of 

precision agricultural technologies: A cross regional study 

of EU farmers. Land Use Policy 80, 163–174. 

https://doi.org/10.1016/j.landusepol.2018.10.004 

all precision 

technologies 
EU 

Economic cost is a barrier 

to adoption; optimism 

for the technology 

Colaço, A.F., Bramley, R.G.V., 2018. Do crop sensors 

promote improved nitrogen management in grain crops? 

Field Crops Res. 218, 126–140. 

https://doi.org/10.1016/j.fcr.2018.01.007 

image world 

A lack of consistent 

evidence of economic 

benefits limits farmers’ 

adoption.  

DeStefano, T., Kneller, R., Timmis, J., 2018. Broadband 

infrastructure, ICT use and firm performance: Evidence for 

UK firms. J. Econ. Behav. Organ. 155, 110–139. 

https://doi.org/10.1016/j.jebo.2018.08.020 

network/ media UK 

ICT causally affects farm 

size (identified via sales 

or employment), but not 

productivity. 

Drach, U., Halachmi, I., Pnini, T., Izhaki, I., Degani, A., 2017. 

Automatic herding reduces labour and increases milking 

frequency in robotic milking. Biosyst. Eng. 155, 134–141. 

https://doi.org/10.1016/j.biosystemseng.2016.12.010 

robotic Israel 

Empirical studies: due to 

robot milking, farm 

labour decreases by 80% 

Edan, Y., Han, S., Kondo, N., 2009. Automation in 

Agriculture, in: Nof, S.Y. (Ed.), Springer Handbook of 

Automation, Springer Handbooks. Springer Berlin 

Heidelberg, Berlin, Heidelberg, pp. 1095–1128. 

https://doi.org/10.1007/978-3-540-78831-7_63 

 
OCDE 

countries 
 

Feng, Jianying Fu, Zetian Wang, Zaiqiong Xu, Mark Zhang, 

Xiaoshuan, 2013 
RFID China 

The reading capacity of 

RFID has the highest cost 

in the traceability chain 

Ferreira, J.J.M., Fernandes, C.I., Ferreira, F.A.F., 2018. To 

be or not to be digital, that is the question: Firm 

innovation and performance. J. Bus. Res. 

https://doi.org/10.1016/j.jbusres.2018.11.013 

network/media Portugal 
competition between 

farms 

Gutiérrez, P. A. López-Granados, F. Peña-Barragán, J. M. 

Jurado-Expósito, M. Hervás-Martínez, C., 2008 

Application data 

analysis 
Spain  
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Hay, R., Pearce, P., 2014. Technology adoption by rural 

women in Queensland, Australia: Women driving 

technology from the homestead for the paddock. J. Rural 

Stud. 36, 318–327. 

https://doi.org/10.1016/j.jrurstud.2014.10.002 

All new 

communication 

technologies 

Australia  

Isaksson, A.J., Harjunkoski, I., Sand, G., 2018. The impact 

of digitalization on the future of control and operations. 
DSS world 

competition between 

farms 

Jakku, E., Taylor, B., Fleming, A., Mason, C., Fielke, S., 

Sounness, C., Thorburn, P., 2018. “If they don’t tell us 

what they do with it, why would we trust them?” Trust, 

transparency and benefit- sharing in Smart Farming. NJAS 

- Wageningen Journal of Life Sciences. 

https://doi.org/10.1016/j.njas.2018.11.002 

all precision 

technologies 
 

trust issues about the 

data holder 

Lio, M., Liu, M.-C., 2006. ICT and agricultural productivity: 

evidence from cross-country data. Agric. Econ. 34, 221–

228. https://doi.org/10.1111/j.1574-0864.2006.00120.x 

ICT sector  
ICT sector improves 

agricultural productivity 

Lovato, 2017 data learning Brazil more profitability 

Luvisi, A., 2016. Electronic identification technology for 

agriculture, plant, and food. A review. Agron. Sustain. Dev. 

36, 13. https://doi.org/10.1007/s13593-016-0352-3 

Identification 

technologies 
world lack of economic studies 

Marcelino, R., Casagrande, L.C., Cunha, R., Crotti, Y., 

Gruber, V., 2018. Internet of Things Applied to Precision 

Agriculture, in: Auer, M.E., Zutin, D.G. (Eds.), Online 

Engineering & Internet of Things, Lecture Notes in 

Networks and Systems. Springer International Publishing, 

pp. 499–509. 

image Spain lack of economic studies 

Mesas-Carrascosa, F. J. Verdú Santano, D. Meroño, J. E. 

Sánchez de la Orden, M. García-Ferrer, A., 2015 
DSS Spain  

O’Shaughnessy, S. A. Rush, C., 2014 
all precision 

technologies 
USA 

potential to use sensors 

to manage irrigation 

Ojeda-Bustamante, Waldo González-Camacho, Juan 

Manuel Sifuentes-Ibarra, Ernesto Isidro, Esteban Rendón-

Pimentel, Luis, 2007 

application/softwa

re 
Mexico 

mapping technologies 

improve irrigation 

efficiency 

Pavón-Pulido, N. López-Riquelme, J. A. Torres, R. Morais, 

R. Pastor, J. A., 2017 
cloud Spain 

cloud computing 

improves economic 

performance for farmers 

Pham, X., Stack, M., 2018. How data analytics is 

transforming agriculture. Business Horizons 61, 125– 133. 

https://doi.org/10.1016/j.bushor.2017.09.011 

DSS USA 
competition between 

farms 

Raymond Hunt Jr, E., Daughtry, C.S.T., 2018. What good 

are unmanned aircraft systems for agricultural remote 

sensing and precision agriculture? Int. J. Remote Sens. 39, 

RS USA higher costs 
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5345–5376. 

https://doi.org/10.1080/01431161.2017.1410300 

Regan, Á., 2019. ‘Smart farming’ in Ireland: A risk 

perception study with key governance actors. NJAS - 

Wagening. J. Life Sci. 

https://doi.org/10.1016/j.njas.2019.02.003 

all precision 

technologies 
Ireland lower costs 

Ruß, G., Kruse, R., Schneider, M., Wagner, P., 2009. 

Visualization of Agriculture Data Using Self- Organizing 

Maps, in: Allen, T., Ellis, R., Petridis, M. (Eds.), Applications 

and Innovations in Intelligent Systems XVI. Springer 

London, pp. 47–60. 

data USA  

Shepherd, Mark Turner, James A. Small, Bruce Wheeler, 

David, 2018 

all precision 

technologies 
USA  

Steinfield, C., Scupola, A., López-Nicolás, C., 2010. Social 

capital, ICT use and company performance: Findings from 

the Medicon Valley Biotech Cluster. Technol. Forecast. 

Soc. Change 77, 1156–1166. 

https://doi.org/10.1016/j.techfore.2010.03.004 

network/ media  competition changed 

Symeonaki, E.G., Arvanitis, K.G., Piromalis, D.D., 2019. 

Cloud Computing for IoT Applications in Climate- Smart 

Agriculture: A Review on the Trends and Challenges 

Toward Sustainability, in: Theodoridis, A., Ragkos, A., 

Salampasis, M. (Eds.), Innovative Approaches and 

Applications for Sustainable Rural Development, Springer 

Earth System Sciences. Springer International Publishing, 

pp. 147–167. 

all precision 

technologies 
  

Torres-Sánchez, J. Peña, J. M. Castro, A. I. de López-

Granados, F., 2014 
UAV Spain  

Vranken, E. Berckmans, D., 2017 software Belgium  

White, R.R., Capper, J.L., 2014. Precision diet formulation 

to improve performance and profitability across various 

climates: Modeling the implications of increasing the 

formulation frequency of dairy cattle diets. J. Dairy Sci. 97, 

1563–1577. https://doi.org/10.3168/jds.2013-6859 

data learning Spain 

Formulating diets weekly 

rather than seasonally 

could increase returns 

over variable costs by 

US$25,000 per year for 

moderate- sized (300-

cow) operations 

Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J., 2017. Big 

Data in Smart Farming – A review. Agricultural Systems 

153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023 

all precision 

technologies 
World  

Yang, H., Wang, X., Zhuang, W., 2010. Case Analysis of 

Farm Agriculture Machinery Informatization Management 

Network System, in: Li, D., Zhao, C. (Eds.), Computer and 

Computing Technologies in Agriculture III, IFIP Advances in 

all precision 

technologies 
China 

Difficulty in quantifying 

benefits due to complex 

agricultural techniques 

ad farm managements 
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PA: Precision Agriculture, ICT: Information Communication Technologies, RS: Remote Sensing, UAV: Unmanned 

Aerial Vehicle, RFID: Radio Frequency Identification 

 

11.3 Indicative Publications to Smart Farming Digital Technologies  

The tables below offer references of scientific publications related to smart farming in Europe. More specifically, 

Table 34 offers the references for involved technologies in European research efforts, followed by a list of the 

references of scientific publication across European countries (where the research took place), references of 

scientific publications across the types of crops used in European research efforts, and references for scientific 

publications across the different field of operations in European research efforts. 

 

 

 

Information and Communication Technology. Springer 

Berlin Heidelberg, pp. 65–76. 

Yong, L., Xiushan, L., Degui, Z., Fu, L., 2002. The main 

content, technical support and enforcement strategy of 

digital agriculture. Geo-Spat. Inf. Sci. 5, 68–73. 

https://doi.org/10.1007/BF02863497 Young, S.L., Meyer, 

G.E., Woldt, W.E., 2014. Future Directions for Automated 

Weed Management in Precision Agriculture, in: Young, 

S.L., Pierce, F.J. (Eds.), Automation: The Future of Weed 

Control in Cropping Systems. Springer Netherlands, 

Dordrecht, pp. 249–259. https://doi.org/10.1007/978-94- 

007-7512-1_15 

all precision 

technologies 
China 

higher costs and more 

trust in digital 

technologies 

Zhou, L., Song, L., Xie, C., Zhang, J., 2013. Applications of 

Internet of Things in the Facility Agriculture, in: Li, D., 

Chen, Y. (Eds.), Computer and Computing Technologies in 

Agriculture VI, IFIP Advances in Information and 

Communication Technology. Springer Berlin Heidelberg, 

pp. 297–303. 

all precision 

technologies 
China  
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Table 34. Involved Technologies in European Research Efforts (Adapted from  [113]) 

Involved 
technologies 

References 

Cloud 
Computing 

M.A. Zamora-Izquierdo, J. 
Santa, J.A. Martínez, V. 
Martínez, A.F. Skarmeta, Smart 
farming IoT platform based on 
edge and cloud computing, 
Biosyst. Eng. 177 (2019) 4–17. 

 J. López-Riquelme, N. Pavón-
Pulido, H. Navarro-Hellín, F. 
Soto-Valles, R. Torres-Sánchez, 
A software architecture based 
on FIWARE cloud for precision 
agriculture, Agric. Water 
Manag. 183 (2017) 123–135. 

P. Psirofonia, V. Samaritakis, P. 
Eliopoulos, “Use of unmanned 
aerial vehicles for agricultural 
applications with emphasis on 
crop protection: Three novel 
case-studies,” Int. J. Agric. Sci. 
Technol. 5 (1) (2017) 30–39. 

 A.C. Cruz, A. Luvisi, L. De Bellis, 
Y. Ampatzidis, X-FIDO: An 
effective application for 
detecting olive quick decline 
syndrome with deep learning 
and data fusion, Front. Plant 
Sci. 8 (2017) 1741. 

F.F. Montesano, M.W. Van 
Iersel, F. Boari, V. Cantore, G. 
D’Amato, A. Parente, Sensor-
based irrigation management 
of soilless basil using a new 
smart irrigation system: Effects 
of set-point on plant 
physiological responses and 
crop performance, Agric. 
Water Man. 203 (2018) 20–29 

 E. Salamí, A. Gallardo, G. 
Skorobogatov, C. Barrado, On-
the-fly olive tree counting 
using a UAS and cloud services, 
Remote Sens. 11 (3) (2019) 
316. 

 R. Morais, N. Silva, J. Mendes, 
T. Adão, L. Pádua, J. López-
Riquelme, N. Pavón-Pulido, J.J. 
Sousa, E. Peres, Mysense: A 
comprehensive data 
management environment to 
improve precision agriculture 
practices, Comput. Electron. 
Agric. 162 (2019) 882–894. 

 A. Somov, D. Shadrin, I. 
Fastovets, A. Nikitin, S. 
Matveev, O. Hrinchuk, et al., 
Pervasive agriculture: IoT-
enabled greenhouse for plant 
growth control, IEEE Pervasive 
Comput. 17 (4) (2018) 65–75. 

 F.J. Ferrández-Pastor, J.M. 
García-Chamizo, M. Nieto-
Hidalgo, J. Mora- Pascual, J. 
Mora-Martínez, Developing 
ubiquitous sensor network 
platform using internet of 
things: Application in precision 
agriculture, Sensors 16 (7) 
(2016) 1141. 

L. Busetto, S. Casteleyn, C. 
Granell, M. Pepe, M. Barbieri, 
M. Campos-Taberner, R. Casa, 
F. Collivignarelli, et al., 
Downstream services for rice 
crop monitoring in europe: 
From regional to local scale, 
IEEE J. Sel. Top. Appl. Earth 
Obs. Remote Sens. 10 (12) 
(2017) 5423–5441. 

 N. Pavón-Pulido, J. López-
Riquelme, R. Torres, R. Morais, 
J. Pastor, New trends in 
precision agriculture: a novel 
cloud-based system for 
enabling data storage and 
agricultural task planning and 
automation, Precis. Agric. 18 
(6) (2017) 1038–1068. 

  

Image 
Processing 

J. Primicerio, S.F. Di Gennaro, 
E. Fiorillo, L. Genesio, E. 
Lugato, A. Matese, F.P. Vaccari, 
A flexible unmanned aerial 
vehicle for precision 

 F. Kurtulmuş, I. Kavdir, 
Detecting corn tassels using 
computer vision and support 
vector machines, Expert Syst. 

 F. Castaldi, F. Pelosi, S. 
Pascucci, R. Casa, Assessing the 
potential of images from 
unmanned aerial vehicles 
(UAV) to support herbicide 

 J. Albetis, S. Duthoit, F. 
Guttler, A. Jacquin, M. Goulard, 
H. Poilvé, J.-B. Féret, G. Dedieu, 
Detection of Flavescence dorée 
grapevine disease using 
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agriculture, Precis. Agric. 13 (4) 
(2012) 517–523. 

Appl. 41 (16) (2014) 7390–
7397. 

patch spraying in maize, Precis. 
Agric. 18 (1) (2017) 76–94. 

Unmanned Aerial Vehicle 
(UAV) multispectral imagery, 
Remote Sens. 9 (4) (2017) 308. 

M. Pérez-Ortiz, J.M. Peña, P.A. 
Gutiérrez, J. Torres-Sánchez, C. 
Hervás- Martínez, F. López-
Granados, Selecting patterns 
and features for betweenand 
within-crop-row weed mapping 
using UAV-imagery, Expert 
Syst. Appl. 47 (2016) 85–94. 

N. Wilke, B. Siegmann, L. 
Klingbeil, A. Burkart, T. Kraska, 
O. Muller, Quantifying lodging 
percentage and lodging 
severity using a UAV-based 
canopy height model combined 
with an objective threshold 
approach, Remote Sens. 11 (5) 
(2019) 515. 

 J.M. Peña, J. Torres-Sánchez, 
A. Serrano-Pérez, A.I. De 
Castro, F. López- Granados, 
Quantifying efficacy and limits 
of unmanned aerial vehicle 
(UAV) technology for weed 
seedling detection as affected 
by sensor resolution, Sensors 
15 (3) (2015) 5609–5626. 

 A. Matese, S.F. Di Gennaro, 
Practical applications of a 
multisensor uav platform 
based on multispectral, 
thermal and rgb high 
resolution images in precision 
viticulture, Agriculture 8 (7) 
(2018) 116. 

L. Quebrajo, M. Perez-Ruiz, L. 
Pérez-Urrestarazu, G. Martínez, 
G. Egea, Linking thermal 
imaging and soil remote 
sensing to enhance irrigation 
management of sugar beet, 
Biosyst. Eng. 165 (2018) 77–87. 

 G. Mozgeris, D. Jonikavičius, D. 
Jovarauskas, R. Zinkevičius, S. 
Petkevičius, D. Steponavičius, 
Imaging from manned ultra-
light and unmanned aerial 
vehicles for estimating 
properties of spring wheat, 
Precis. Agric. 19 (5) (2018) 
876–894. 

 A. Michez, S. Bauwens, Y. 
Brostaux, M.-P. Hiel, S. Garré, 
P. Lejeune, B. Dumont, How far 
can consumer-grade UAV RGB 
imagery describe crop 
production? A 3D and 
multitemporal modeling 
approach applied to zea mays, 
Remote Sens. 10 (11) (2018). 

 R.A. Díaz-Varela, R. De la Rosa, 
L. León, P.J. Zarco-Tejada, High-
resolution airborne UAV 
imagery to assess olive tree 
crown parameters using 3D 
photo reconstruction: 
application in breeding trials, 
Remote Sens. 7 (4) (2015) 
4213–4232. 

C. Potena, R. Khanna, J. Nieto, 
R. Siegwart, D. Nardi, A. Pretto, 
AgriColMap: Aerial-ground 
collaborative 3D mapping for 
precision farming, IEEE Robot. 
Autom. Lett. 4 (2) (2019) 1085–
1092. 

L. Busetto, S. Casteleyn, C. 
Granell, M. Pepe, M. Barbieri, 
M. Campos-Taberner, R. Casa, 
F. Collivignarelli, et al., 
Downstream services for rice 
crop monitoring in europe: 
From regional to local scale, 
IEEE J. Sel. Top. Appl. Earth 
Obs. Remote Sens. 10 (12) 
(2017) 5423–5441 

J. Kaivosoja, L. Pesonen, J. 
Kleemola, I. Pölönen, H. Salo, E. 
Honkavaara, A case study of a 
precision fertilizer application 
task generation for wheat 
based on classified 
hyperspectral data from UAV 
combined with farm history 
data, in: Remote Sensing 
for Agriculture, Ecosystems, 
and Hydrology XV, vol. 8887, 
International Society for Optics 
and Photonics, 2013, p. 8870H. 

F.-J. Mesas-Carrascosa, J. 
Torres-Sánchez, I. Clavero-
Rumbao, A. García-Ferrer, J.-M. 
Peña, I. Borra-Serrano, F. 
López-Granados, Assessing 
optimal flight parameters for 
generating accurate 
multispectral orthomosaicks by 
UAV to support site-specific 
crop management, Remote 
Sens. 7 (10) (2015) 12793–
12814. 
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J. Torres-Sánchez, J.M. Pena, 
A.I. de Castro, F. López-
Granados, Multitemporal 
mapping of the vegetation 
fraction in early-season wheat 
fields using images from UAV, 
Comput. Electron. Agric. 103 
(2014) 104–113. 

V. Gonzalez-Dugo, P. Zarco-
Tejada, E. Nicolás, P.A. Nortes, 
J. Alarcón, D.S. 
Intrigliolo, E. Fereres, Using 
high resolution UAV thermal 
imagery to 
assess the variability in the 
water status of five fruit tree 
species within 
a commercial orchard, Precis. 
Agric. 14 (6) (2013) 660–678. 

 T.T. Nguyen, K. Vandevoorde, 
E. Kayacan, J. De 
Baerdemaeker, W. Saeys, 
Apple detection algorithm for 
robotic harvesting using a RGB-
D camera, in: International 
Conference of Agricultural 
Engineering, Zurich, 
Switzerland, 2014. 

D. Stroppiana, M. Migliazzi, V. 
Chiarabini, A. Crema, M. 
Musanti, C. 
Franchino, P. Villa, Rice yield 
estimation using multispectral 
data from UAV: A preliminary 
experiment in northern Italy, 
in: 2015 IEEE International 
Geoscience and Remote 
Sensing Symposium (IGARSS), 
IEEE, 2015, pp. 4664–4667. 

 J. Campos, J. Llop, M. Gallart, 
F. García-Ruiz, A. Gras, R. 
Salcedo, E. Gil, Development of 
canopy vigour maps using UAV 
for site-specific management 
during vineyard spraying 
process, Precis. Agric. 20 (6) 
(2019) 1136–1156. 

 X. Jin, S. Liu, F. Baret, M. 
Hemerlé, A. Comar, Estimates 
of plant density of wheat crops 
at emergence from very low 
altitude UAV imagery, Remote 
Sens. Environ. 198 (2017) 105–
114. 

P. Katsigiannis, L. Misopolinos, 
V. Liakopoulos, T.K. 
Alexandridis, G. Zalidis, 
An autonomous multi-sensor 
UAV system for reduced-input 
precision 
agriculture applications, in: 
2016 24th Mediterranean 
Conference on 
Control and Automation 
(MED), IEEE, 2016, pp. 60–64. 

 G. Caruso, L. Tozzini, G. Rallo, 
J. Primicerio, M. Moriondo, G. 
Palai, R. Gucci, Estimating 
biophysical and geometrical 
parameters of grapevine 
canopies (‘sangiovese’) by an 
unmanned aerial vehicle (UAV) 
and VIS-NIR cameras, Vitis 56 
(2) (2017) 63–70. 

 F.A. Vega, F.C. Ramirez, M.P. 
Saiz, F.O. Rosua, Multi-
temporal imaging using an 
unmanned aerial vehicle for 
monitoring a sunflower crop, 
Biosyst. Eng. 132 (2015) 19–27. 

 L. Pádua, P. Marques, J. 
Hruška, T. Adão, E. Peres, R. 
Morais, J.J. Sousa, Multi-
temporal vineyard monitoring 
through UAV-based RGB 
imagery, Remote Sens. 10 (12) 
(2018) 1907. 

 I. Navrozidis, T.K. Alexandridis, 
A. Dimitrakos, A.L. Lagopodi, D. 
Moshou, G. Zalidis, 
Identification of purple spot 
disease on asparagus crops 
across spatial and spectral 
scales, Comput. Electron. Agric. 
148 (2018) 322–329. 

 K. Kuželka, P. Surovy` , 
Automatic detection and 
quantification of wild game 
crop damage using an 
unmanned aerial vehicle (UAV) 
equipped with an optical 
sensor payload: a case study in 
wheat, Eur. J. Remote Sens. 51 
(1) (2018) 241–250. 

 P.J. Zarco-Tejada, V. González-
Dugo, J.A. Berni, Fluorescence, 
temperature and narrow-band 
indices acquired from a UAV 

 H. Hoffmann, H. Nieto, R. 
Jensen, R. Guzinski, P. Zarco-
Tejada, T. Friborg, Estimating 
evaporation with thermal UAV 

C. Romero-Trigueros, P.A. 
Nortes, J.J. Alarcón, J.E. Hunink, 
M. Parra, S. 
Contreras, P. Droogers, E. 

 S. Marino, A. Alvino, Detection 
of homogeneous wheat areas 
using multitemporal UAS 
images and ground truth data 
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platform for water stress 
detection using a micro-
hyperspectral imager and a 
thermal camera, Remote Sens. 
Environ. 117 (2012) 322–337. 

data and two-source energy 
balance models, Hydrol. Earth 
Syst. Sci. 20 (2) (2016) 697–
713. 

Nicolás, Effects of saline 
reclaimed waters and 
deficit irrigation on citrus 
physiology assessed by UAV 
remote sensing, 
Agric. Water Manag. 183 
(2017) 60–69. 

analyzed by cluster analysis, 
Eur. J. Remote Sens. 51 (1) 
(2018) 266–275. 

 P.J. Zarco-Tejada, R. Diaz-
Varela, V. Angileri, P. Loudjani, 
Tree height quantification 
using very high resolution 
imagery acquired from an 
unmanned aerial vehicle (UAV) 
and automatic 3D photo-
reconstruction methods, Eur. J. 
Agron. 55 (2014) 89–99 

 D. Gómez-Candón, A. De 
Castro, F. López-Granados, 
Assessing the accuracy of 
mosaics from unmanned aerial 
vehicle (UAV) imagery for 
precision agriculture purposes 
in wheat, Precis. Agric. 15 (1) 
(2014) 44–56. 

L. Santesteban, S. Di Gennaro, 
A. Herrero-Langreo, C. 
Miranda, J. Royo, A. Matese, 
High-resolution UAV-based 
thermal imaging to estimate 
the instantaneous and seasonal 
variability of plant water status 
within a vineyard, Agric. Water 
Manag. 183 (2017) 49–59. 

J. Bendig, A. Bolten, G. Bareth, 
UAV-based imaging for multi-
temporal, very high Resolution 
Crop Surface Models to 
monitor Crop Growth 
Variability Monitoring des 
Pflanzenwachstums mit Hilfe 
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Oberflächenmodelle von 
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and testing a UAV mapping 
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surveying, Sensors 17 (12) 
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 D. Gómez-Candón, N. Virlet, S. 
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Table 37. Field operations in European research efforts  (Adapted from  [113]) 
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