
Research and Innovation Action
HORIZON-CL6-2022-GOVERNANCE-01

TOPIC: HORIZON-CL6-2022-GOVERNANCE-01-11

© Copyright by the AgriDataValue Consortium

Funded by the European Union under Grant Agreement no. 101086461

AgriDataValue
Smart Farm and Agri-environmental Big Data Value

Deliverable D2.1

AgriDataSpace Underlying Technology

Authors I. Oikonomidis, I. Chrysakis

Nature Report

Dissemination Public

Version v1.0

Status Final

Delivery Date (DoA) M12

Actual Delivery Date 31/01/2024

Keywords AgriDataValue, Data, DataSpaces, Integration, Verification, Validation, Deployment, FDML,
Storage, XAI, Secure

Abstract This handbook describes AgriDataValue Platform first version. It provides an overview of the
deployment options that AgriDataValue has chosen, explaining how these options favour the
platform's reproducibility as well as enforce its resilience and performance capacity. Finally, it
reports the platform and its component verification and validation plan. In addition, the
document describes in detail the design and functionality aspects of the AgriDataValue Platform
components. It also discusses how the various components get integrated into a coherent
framework offering coordinated services.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 2 of 124

ACKNOWLEDGEMENT
The AgriDataValue project is funded by the European Union under Grant Agreement No. 101086461. Views and

opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European

Union or the European Research Executive Agency, while neither the European Union nor the granting authority

can be held responsible for any use of this content. No part of this document may be used, reproduced and/or

disclosed in any form or by any means without the prior written permission of the AgriDataValue consortium.

 Participant organisation name Short Country

01 SYNELIXIS SOLUTIONS S.A. SYN EL

02 ATOS IT SOLUTIONS AND SERVICES IBERIA SL ATOS ES

03 SIXENSE ENGINEERING SIXEN FR

04 NETCOMPANY-INTRASOFT SA INTRA LU

05 SIEMENS SRL SIEM RO

06 SINERGISE LABORATORIJ ZA GEOGRAFSKEINFORMACIJSKE SISTEME DOO SINER SI

07 ALMAVIVA - THE ITALIAN INNOVATION COMPANY SPA ALMA IT

08 INTERNATIONAL DATA SPACES EV IDSA DE

09 SOFTWARE IMAGINATION & VISION SRL SIMAVI RO

10 SINGULARLOGIC S.A. SLG EL

11 EIGEN VERMOGEN VAN HET INSTITUUT VOOR LANDBOUW- EN VISSERIJONDERZOEK EV ILVO BE

12 ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON NKUA EL

13
INAGRO, PROVINCIAAL EXTERNVERZELFSTANDIGD AGENTSCHAP IN
PRIVAATRECHTELIJKE VORM VZW

InAgro BE

14 UNIWERSYTET LODZKI UL PL

15 FUNDACION PARA LAS TECNOLOGIAS AUXILIARES DE LA AGRICULTURA TEC ES

16 DELPHY BV Delphy NL

17 INSTITUTO TECNOLOGICO DE ARAGON ITAIN ES

18 ZEMNIEKU SAEIMA ZSA LV

19 SOCIEDAD ARAGONESA DE GESTION AGROAMBIENTAL SL SARGA ES

20 AGROTIKOS KTINOTROFIKOS SYNETAIRISMOS KATOUNAS TO VIOLOGIKO AGROKTIMA TBA EL

21 SOCIETA ITALIANA DI VITICOLTURA ED ENOLOGIA SIVE IT

22
NILEAS-SYNETAIRISMOS PISTOPOIIMENON AGROTIKON PROIONTON DIMOU
NESTOROS MESSINIAS

NILEAS EL

23 CONSEIL DES VINS DE SAINT-EMILION CVSE FR

24 ASOCIATIA OPERATORILOR DIN AGRICULTURA ECOLOGICA BIO ROMANIA BIORO RO

25 RI.NOVA SOCIETA COOPERATIVA RI.NO IT

26 AGRO DIGITAL SOLUTIONS AgroDS LT

27 NATIONAL PAYING AGENCY NPA LT

28 AGENZIA PROVINCIALE PER I PAGAMENTIDELLA PROVINCIA AUTONOMA DI TRENTO APPAG IT

29 AGENTIA DE PLATI SI INTERVENTIE PENTRU AGRICULTURA APIA RO

30 QUEEN MARY UNIVERSITY OF LONDON QMUL UK

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 3 of 124

DISCLAIMER
This document is a deliverable of the AgriDataValue project funded by the European Union under Grant

Agreement No.101086461. Views and opinions expressed are however those of the author(s) only and do not

necessarily reflect those of the European Union or the European Research Executive Agency, while neither the

European Union nor the granting authority can be held responsible for any use of this content.

This document may contain material, which is the copyright of certain AgriDataValue consortium parties, and may

not be reproduced or copied without permission. All AgriDataValue consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require a

license from the proprietor of that information.

Neither the AgriDataValue consortium as a whole, nor a certain party or parties of the AgriDataValue consortium

warrant that the information contained in this document is capable of use, nor that use of the information is free

from risk and does not accept any liability for loss or damage suffered using this information.

Document History
Version Date Contributor(s) Description

v0.1 18/10/2023 Y. Oikonomidis, I. Chrysakis (INTRA) ToC

v0.2 20/12/2023 Y. Oikonomidis, I. Chrysakis (INTRA), N. Vesel
(SINER), A. Turkmayali (IDSA), I. Ilie (SIEM), A.
Retico, S. Sestili (ALMA), P. Ramírez, J. García,
R. Lazcano (ATOS)

Content to INTRA sections, Contributions
from partners to sections 3-6 and Annex I

v0.3 08/01/2024 Y. Oikonomidis, I. Chrysakis (INTRA), K. Railis,
A. Lakka (SYN), K. Chandramouli (QMUL), S.
Rizou, I. Sotiropoulos (SLG)

Merged contributions from partners to
sections 3, 5, and 6.

v0.4 15/01/2024 Y. Oikonomidis, I. Chrysakis (INTRA), K. Railis,
A. Lakka (SYN), S. Rizou, I. Sotiropoulos (SLG),
I. Ilie (SIEM)

Merged input for sections 3 and 5.

v0.5 17/01/2024 Y. Oikonomidis, I. Chrysakis (INTRA), N. Vesel
(SINER)

Merged final input, Conclusions, Ready for
internal review.

v0.6 26/01/2024 Y. Oikonomidis, I. Chrysakis (INTRA), S. Rizou, I.
Karvelas (SLG), K. Railis (SYN), A. Tudorascu, M.
Angheloiu (SIMAVI)

Added subsection 8.3, Addressed Internal
reviewers’ comments, Prepared for final
submission

v0.7 30/01/2024 Y. Oikonomidis, I. Chrysakis (INTRA) Submission candidate

v1.0 31/01/2024 T. Zahariadis, G. Athanasiou, K. Railis (SYN) Finalization

Document Reviewers
Date Reviewer’s name Affiliation

26/01/2024 K. Railis SYN

25/01/2024 S. Rizou, I. Karvelas SLG

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 4 of 124

Table of Contents
Definitions, Acronyms and Abbreviations .. 11

Executive Summary ... 13

1 Introduction ... 14

1.1 Scope and purpose ...14

1.2 Document overview ...14

2 AgriDataValue Integrated Platform ... 16

2.1 AgriDataValue platform as a whole ...16

2.2 AgriDataValue platform integration considerations ..17

2.3 Configuring and deploying the AgriDataValue platform ..17

2.3.1 Docker & Registry ... 18

2.3.2 Kubernetes essentials .. 18

2.3.3 Deployment platform ... 21

3 Decentralised data capture management & in-situ pre-processing tools 22

3.1 IoT sensors data toolbox (IOTD) ...22

3.1.1 Description ... 22

3.1.2 Development view ... 24

3.1.3 Process view ... 26

3.1.4 Interfaces ... 27

3.1.5 Technologies and implementation details ... 27

3.2 Terrestrial Geotagged-Photos (GTP App) Data Capturing Toolbox ..28

3.2.1 Description ... 28

3.2.2 Development view ... 29

3.2.3 Process view ... 31

3.2.4 Interfaces ... 31

3.3 Drone data toolbox (DRD) ..31

3.3.1 Description ... 32

3.3.2 Development view ... 32

3.3.3 Process view ... 34

3.3.4 Interfaces ... 35

3.3.5 Technologies and implementation details ... 35

3.4 Satellite Earth Observation Data Capturing toolbox (EOD) ...36

3.4.1 Description ... 36

3.4.2 Development view ... 37

3.4.3 Process view ... 37

3.4.4 Interfaces ... 38

3.4.5 Technologies and implementation details ... 41

4 Edge Cloud Analytics Suite .. 42

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 5 of 124

4.1 Federated Machine Learning (FDML) ...42

4.1.1 Description ... 42

4.1.2 Development view ... 44

4.1.3 Process view ... 46

4.1.4 Interfaces ... 48

4.1.5 Technologies and implementation details ... 51

4.2 Human Explainable Conceptual Framework (XAI) ...51

4.2.1 Description ... 51

4.2.2 Development view ... 52

4.2.3 Process view ... 54

4.2.4 Interfaces ... 55

4.2.5 Technologies and implementation details ... 57

5 Data Security, Privacy, Traceability & Sharing.. 59

5.1 Trustworthy Data and ML models storage and sharing (SECURESTORE) ..59

5.1.1 Description ... 59

5.1.2 Development view ... 60

5.1.3 Process view ... 61

5.1.4 Interfaces ... 61

5.1.5 Technologies and implementation details ... 63

5.2 DLT-based supply chain tracking solution (CHAINTRACK) ...63

5.2.1 Description ... 63

5.2.2 Development view ... 64

5.2.3 Process view ... 65

5.2.4 Interfaces ... 70

5.2.5 Technologies and implementation details ... 73

5.3 Access Control System (ACS) ..73

5.3.1 Description ... 73

5.3.2 Development view ... 74

5.3.3 Process view ... 74

5.3.4 Interfaces ... 75

5.3.5 Technologies and implementation details ... 75

5.4 International Data Spaces (IDS) component(s) ..76

5.4.1 Description ... 76

5.4.2 Development view ... 77

5.4.3 Process view ... 81

5.4.4 Interfaces ... 82

5.4.5 Technologies and implementation details ... 82

6 AI-Based Cloud Platform ... 83

6.1 Decentralised Knowledge Management (DKM) ...83

6.1.1 Description ... 83

6.1.2 Development view ... 84

6.1.3 Process view ... 86

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 6 of 124

6.1.4 Interfaces ... 87

6.1.5 Technologies and implementation details ... 89

6.2 Storage (STORE) ...89

6.2.1 Description ... 89

6.2.2 Development view ... 89

6.2.3 Process view ... 90

6.2.4 Interfaces ... 91

6.2.5 Technologies and implementation details ... 91

6.3 FL-AgriDataGen (DATAGEN) ...91

6.3.1 Description ... 91

6.3.2 Development view ... 92

6.3.3 Process view ... 94

6.3.4 Interfaces ... 95

6.3.5 Technologies and implementation details ... 98

7 Infrastructure and tools .. 99

7.1 CI/CD pipeline ...99

7.2 Tools in AgriDataValue ...101

7.2.1 Software management tool ... 101

7.2.2 Message bus ... 104

7.3 Infrastructure ...105

7.4 Documentation ..105

8 Component verification and validation ... 107

8.1 Verification plan ...107

8.2 Validation plan ...108

8.3 Technical requirements – the update process ...109

8.4 Verification report collection status...110

9 Conclusions and Next Steps .. 111

References .. 112

Annex I ... 113

Kafka message schema ..113

Generic-message schema ... 113

Generic-header schema .. 113

Generic-body schema ... 114

Component verification report template ..114

Component Validation Report .. 114

Component general description ... 114

Integration and Functionality Tests .. 115

Validation summary .. 116

Component KPIs .. 116

EOD API description ...117

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 7 of 124

Fleviden Framework ..121

Introduction .. 121

Background for Fleviden Framework .. 121

Hierarchical Federated Learning Agents in Fleviden ... 122

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 8 of 124

Table of Figures

Figure 1: High-level reference architecture overview ..16

Figure 2: An instance of the AgriDataValue namespace ..21

Figure 3: Storage classes of the Kubernetes cluster ...21

Figure 4: A SynFieldTM device ... Error! Bookmark not defined.

Figure 5: A SynAirTM Installation ...24

Figure 6: Component diagram for the IOTD Toolbox ...25

Figure 7: Simplified sequence diagram for the IOTD toolbox ..27

Figure 8 - GTP Application with the front end and backend processing ..29

Figure 9 - Geotagged Photo-App sequence diagram ...31

Figure 10: DRD Toolbox component diagram ... Error! Bookmark not defined.

Figure 11: DJI Matrice 600 Pro ...33

Figure 12: Parrot Sequoia+ ...33

Figure 13: DRD Toolbox sequence diagram..35

Figure 14: EOD - Component diagram ..37

Figure 15: Sentinel Hub diagram. Sentinel Hub allows access to various kinds of raster imagery data (i.e. Copernicus

Open Data, custom imagery (Drone), raster model results) via a set of custom OGC compliant API endpoints. ...38

Figure 16: EOD - Sequence diagram ...38

Figure 17: Conventional FL example architecture ..43

Figure 18: FDML -Generic HFL topology ...43

Figure 19: AgriDataValue FDML initial hierarchy ...44

Figure 20: FDML component diagram ..45

Figure 21: Process view of the FDML for the training or fulfilment process ..47

Figure 22: FDML - Process view of the FDML for the inference or delivery process ...48

Figure 23: XAI - Framework envisioned to develop AI systems that are transparent and explainable so that they

can be trusted by non-expert end-users ..52

Figure 24: XAI - Framework logical components interacting to assure XAI functionality.53

Figure 25: XAI - Sequence diagram integrating XAI and FDML...54

Figure 26: ADV XAI Framework implementation toolsets along with scope of explanation57

Figure 27. Logica view diagram for SECURESTORE ...60

Figure 28. Sequence diagram for SECURESTORE ...61

Figure 29: Logical view diagram – CHAINTRACK ..64

Figure 30: CHAINTRACK deployment architecture. ..65

Figure 31:Development usually needed to configure the supply chain to track. ..66

Figure 32: ACS - Component diagram ..74

Figure 33: ACS - Sequence diagram ..75

Figure 34: ADV ACS - Keycloak main page ..76

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 9 of 124

Figure 35: ADV ACS - Realm page ...76

Figure 36: Visual description of a Data Space and IDS Components ..77

Figure 37: Functionalities of the IDS Connector Core Service(s) ..78

Figure 38: Separation of Control Plane and Data Plane in Dataspace Protocol (v0.8) ...81

Figure 39. ADV platform functional view (source: deliverable D1.3) ...81

Figure 40: DKM security in the learning process ..83

Figure 41: Logical diagram for the DKM component ...84

Figure 42: Sequence diagram for the DKM ..87

Figure 43: STORE - Component diagram ..90

Figure 44: STORE - Sequence diagram..90

Figure 45: FL-AgriDataGen component diagram ..93

Figure 46: FL-AgriDataGen sequence diagram ...95

Figure 47: AgriDataValue DevSecOps ...99

Figure 48: CI/CD pipeline – Source: about.gitlab.com. ..100

Figure 49: CI/CD pipeline steps - Source: docs.gitlab. ..100

Figure 50: Development lifecycle (from source code to Kubernetes) ..101

Figure 51: Overview of AgriDataValue group in ADV’s self-hosted GitLab instance ..102

Figure 52: Snapshot of ADV’s group issues in GitLab ...103

Figure 53: Snapshot of ADV’s container registry ..104

Figure 54: Documentation – Guidelines ...106

Figure 55: Documentation - Kubernetes example ...106

Figure 56: AgriDataValue's Component Test Levels ...108

Figure 57: Verification and Validation process ...108

Figure 58. Fleviden architecture for the development of the DKM component ...122

Figure 59. Fleviden architecture for the development of the FDML intermediate server sub-component123

Figure 60. Fleviden architecture for the development of an FDML Client ...123

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 10 of 124

Table of Tables

Table 1: Data models used in the FDML ...48

Table 2: Description of the interfaces of the FDML clients ..49

Table 3: Description of the interface/rest/downstream of the FDML intermediate server49

Table 4: Description of the interface /rest/upstream of the FDML intermediate server ..50

Table 5: CHAINTRACK for Olive Oil: “Collection” technical steps ...66

Table 6: CHAINTRACK for Olive Oil: “Delivery” technical steps..67

Table 7:CHAINTRACK for Olive Oil: “Milling” technical steps ...68

Table 8: CHAINTRACK for Olive Oil: “Packaging” technical steps ...68

Table 9: CHAINTRACK for Olive Oil: “Certification” technical steps ...69

Table 10: CHAINTRACK for Olive Oil: “Distribution” technical steps ..70

Table 11: DKM - Metadata generated for each global model ..85

Table 12: Integration server overview: DELL PowerEdge R540 ...105

Table 13: Integration server overview: DELL PowerEdge R210II ...105

Table 14: Component's general description ..114

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 11 of 124

Definitions, Acronyms and Abbreviations
AAA Authentication, Authorization and Accounting

ABE Attribute-Based Encryption

ACS Access Control System

AI Artificial Intelligence

AIPT Aerial Image Processing Toolkit

API Application Programming Interface

BYOC Bring Your Own Collection

CA Consortium Agreement

CI Continuous Integration

CD Continuous Delivery

DKM Decentralised Knowledge Management

DL Deep Learning

DLT Distributer Ledger Technology

DMT Data Model Translator

DOCG Denomination of Controlled and Guaranteed Origin

DP-SGD Differentially private Stochastic Gradient Descent

DRD Drone Data Toolbox

DSS Decision Support Systems

EO Earth Observation

EOD Satellite Earth Observation Data Capturing toolbox

FDML Federated Deep Machine Learning

FedAvg Federated Averaging

FL Federated Learning

GAN Generative Adversarial Network

GPS Global Positioning System

GTP Geo-tagged Photo

HFL Hierarchical Federated Learning

HTTP Hypertext Transfer Protocol

IDS International Data Space

IOTD IoT sensors Data Toolbox

ISQTB International Software Testing Qualifications Board

JSON JavaScript Object Notation

JWT JSON Web Token

KPI Key Performance Indicator

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 12 of 124

ML Machine Learning

NFC Near Field Communication

OGC Open Geospatial Consortium

OIDC OpenID Connect

OS Operating System

OSM Open Street Maps

PATE Private Aggregation of Teacher Ensemble

PVC Persistent Volume Claim

QR Quick Response

REST Representational State Transfer

SAML Security Assertion Markup Language

SCM Source Code Management

SSL Secure Sockets Layer

STAC Spatio-Temporal Asset Catalogs

TDD Test-driven Development

TLS Transport Layer Security

UML Unified Modeling Language

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 13 of 124

Executive Summary

This document describes the first version of the AgriDataValue Platform, which combines the features from the

initial releases of the AgriDataValue components created under Work Packages (WP) WP2, WP3, and WP4.

The AgriDataValue integrated platform's initial version offers sub-system level integration, primarily concentrating

on the functionality of the individual components as well as the integrated platform as a whole. It provides an

overview of the infrastructure in use and provides details on various aspects of integration and deployment. In

fact, the following topics are clarified by this report:

• The infrastructure and integration framework utilized in the project's technology development pipelines;

• The most recent developments in the AgriDataValue component development;

• The deployment and configuration perspective of the AgriDataValue Platform;

• The methodology for the verification and validation of the integrated platform and its constituent parts.

Deliverable D2.2, " AgriDataSpace Platform of Platforms V1," is anticipated to contain the second iteration of

the AgriDataValue Platform at M24.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 14 of 124

1 Introduction
This deliverable aims to give an overview of the first version of the AgriDataValue Platform and its components,

as well as details the project's integration and validation tasks.

This document discusses the AgriDataValue Integrated Platform, taking into account both the platform's

functionality and the integration of its component parts. Updates and developments related to the

components that make up the integrated platform, revisions to the integration specifications and tools, and

activities related to the platform's verification and validation are the main focus of the first integrated

prototype.

1.1 Scope and purpose

The scope and purpose of the document are introduced in this section. D2.1, the first of three deliverables for

the AgriDataValue platform, is presented in this document. The initial release of the AgriDataValue

components integrated into the AgriDataValue platform is provided by this deliverable which was aided by

the technical WPs and the owners of each component.

The deliverable's objectives are to document:

• the AgriDataValue Platform components' functionality and design;

• how the various parts come together to form a cohesive framework that provides coordinated

services;

• how AgriDataValue‘s deployment options support the platform's reproducibility and uphold its

resilience and performance capacity through design; and

• how the platform will be verified and validated.

1.2 Document overview

The remainder of this document is comprised of the following sections:

• Section 2 presents the first version of the AgriDataValue platform, the steps that were taken in order

to ensure graceful cooperation among the various AgriDataValue subparts and the cloud-native

considerations that led to the adoption of Kubernetes1 as a deployment infrastructure and container

orchestration framework.

• Section 3 presents the components group Decentralised data capture management & in-situ pre-

processing tools (from WP3 and WP4)

• Section 4 presents the components group Edge Cloud Analytics Suite (from WP2)

• Section 5 presents the components group Data Security, Privacy, Traceability & Sharing (from WP2)

• Section 6 presents the component group AI-based Cloud platform (from WP2)

• Section 7 describes the infrastructure and tools that have been setup, deployed, configured, and how

they are leveraged to assist in integrating and deploying an AgriDataValue component.

1 https://kubernetes.io

https://kubernetes.io/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 15 of 124

• Section 8 includes the verification and validation plan, describes the process that is being followed for

the update of the technical requirements, and summarizes the Verification and Validation reports

collected so far for the various AgriDataValue components.

• Section 9 provides the conclusions and next steps.

• Annex I provides:

o the Message bus data schema

o the template used to represent the general information of the verification and validation of

any AgriDataValue component.

o the Message bus data schema

o the EOD component API description

o the Fleviden Framework

As far as the reader is concerned, given that this deliverable documents the initial version of the integrated

ADV platform and its sub-components, it is suggested to be read in a linear manner.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 16 of 124

2 AgriDataValue Integrated Platform
This section aims to provide an overview of the integrated AgriDataValue platform prototype, document issues

raised regarding the ease of use of the system during development and implementation, and present and

evaluate the procedures of the framework that was created for the automated configuration and deployment

of the entire AgriDataValue platform.

2.1 AgriDataValue platform as a whole

The AgriDataValue architecture and a synopsis of the platform's components are presented in D1.3, the first

step towards the development of the AgriDataValue integrated platform. To keep this deliverable self-

contained, we provide an overview of the AgriDataValue platform architecture in Figure 1. Sections 3-6 of this

document provide a more thorough analysis and expansion of the platform's components. This section

examines our design decisions and the addition of automated flows, with a primary focus on the deployment

of the AgriDataValue platform.

Our efforts have been focused on developing a reliable method for easily and reliably deploying, updating, and

maintaining the various parts of the integrated AgriDataValue platform due to the significance of the project

and its potential results. Because of this, a cloud-native strategy was chosen, along with a reliable toolkit for

contemporary architectures that included Docker and Kubernetes. This toolkit is being adopted in a way that

places Kubernetes at the centre of the AgriDataValue architecture. The following illustrates how the

components' development is directly impacted by the chosen approach.

Figure 1: High-level reference architecture overview

The AgriDataValue elements that will be incorporated into the platform's initial release are the following:

• FDML (Edge Cloud Analytics Suite)

• XAI (Edge Cloud Analytics Suite)

• SECURESTORE (Data Security, Privacy, Traceability & Sharing)

• CHAINTRACK (Data Security, Privacy, Traceability & Sharing)

• ACS (Data Security, Privacy, Traceability & Sharing)

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 17 of 124

• DKM (AI-Based Cloud Platform)

• DATAGEN (AI-Based Cloud Platform)

The components above were prioritized as they form the core of the ADV platform, and also, they were

somewhat detached from the pilots in the sense that their initial development could proceed and reach a

suitable maturity level without blocking dependencies on the Use cases or User scenarios. Of course, from

that point forward, pilot and end-user related information is important.

The rest of the components are currently under development and will be integrated into the platform in the

upcoming period. However, there are already plans for their smooth integration and preliminary integration

tests have already been performed for some of these components.

2.2 AgriDataValue platform integration considerations

AgriDataValue and its component parts are inherently complex, so during the development of the

AgriDataValue integrated platform, factors like the requirement for dependable and simple component

installation acted as major motivators. The introduction of the cloud-native Kubernetes approach also brings

up several integration-related considerations that must be addressed to ensure that an application is easy to

install and maintain over time, as well as robustness and integrity during deployment operations. Kubernetes

is an open-source container orchestration platform which makes software deployment, scaling, and

management automated.

Initially, before deploying an application as a container (or group of containers) to Kubernetes, a set of YAML

files must be created. These YAML files describe various components of the deployment, exposed service (if

any), employed storage, config maps, and secrets with important deployment information (e.g., values for

environment variables), and jobs for necessary initialization and other recurring tasks. The deployment of our

custom applications requires these files. For our applications as well as external components like Keycloak2

(core of ACS component) and Apache Kafka3 which are further described in section 7, we employ an automated

configuration and deployment flow that necessitates manual file authoring; this process is covered in the

sections that follow.

Since the noted factors have been suitably taken into account, an automated workflow for the straightforward

and default configuration and deployment of the AgriDataValue platform has been developed.

2.3 Configuring and deploying the AgriDataValue platform

The subsections that follow describe some technical aspects of the ADV platform with respect to its

deployment and configuration, having Docker and Kubernetes at the core of this process. With the use of

Docker, applications can be automatically deployed into lightweight containers, enabling them to function

effectively in separate environments.

2 https://www.keycloak.org/: Keycloak is an open-source software solution designed for contemporary applications and

services that enables single sign-on with identity and access control. It offers features including user management, two-

factor authentication, permissions and roles management, creating token services, and support for multiple protocols

including OpenID, OAuth version 2.0, and SAML.
3 https://kafka.apache.org/: Apache Kafka is a platform for stream processing and distributed event storing. It offers a

single, low-latency, high-throughput platform for managing real-time data feeds.

https://www.keycloak.org/
https://kafka.apache.org/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 18 of 124

2.3.1 Docker & Registry

2.3.1.1 Dockerfile

Ideally, the minimum requirement for the smooth deployment and integration of every AgriDataValue

component is a Dockerfile. Ideally, the Docker image created by the Dockerfile provided by the developer

should run without with a simple docker run command. That is the case when the ENTRYPOINT and CMD

arguments are used correctly, along with the ports to EXPOSE. Of course, for a proper run various

environmental variables have to be set.

2.3.1.2 Registry
The container registry for the AgriDataValue project runs at https://registry.git.agridatavalue.eu.

Let's consider an image for the present project. The project lies under the AgriDataValue / Guidelines subgroup.

This specific image will be accessible under registry.git.agridatavalue.eu/agridatavalue/guidelines/kubernetes. If an

image has been built with a vX.X.X tag, then the user can pull the image via registry.git.agridatavalue.eu/

agridatavalue/ guidelines/ kubernetes:vX.X.X.

Generally, a registered user can push and pull images to the registry with their GitLab credentials, as long as

they are a member of the repository under discussion.

The example GitLab CIs have been configured to automatically build the essential Docker images. As long as a

project includes an appropriately modified (if needed) .gitlab-ci.yml at the root of the repository the images will

be built.

2.3.2 Kubernetes essentials

In the following brief explanations of Kubernetes essential objects for the deployment of an application are

provided.

2.3.2.1 ConfigMap

A ConfigMap is an API object used to store non-confidential data in key-value pairs. Pods can consume

ConfigMaps as environment variables, command-line arguments, or as configuration files in a volume. More

can be found at https://kubernetes.io/docs/concepts/configuration/configmap/.

An example ConfigMap is shown below:

apiVersion: v1

kind: ConfigMap

metadata:

 name: go-example-app

 namespace: agridatavalue

data:

 example: example-value

2.3.2.2 Secret
A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key. Such

information might otherwise be put in a Pod specification or in a container image. Using a Secret means that

you don't need to include confidential data in your application code. See more:

https://kubernetes.io/docs/concepts/configuration/secret/.

The values stored in a Kubernetes Secret must be Base64 encoded. For instance, let’s assume that we need to

create a Secret entry titled example with value examplesecret. We should run the following command:

$ echo -n "examplesecret" | base64

ZXhhbXBsZXNlY3JldA==

https://registry.git.agridatavalue.eu/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 19 of 124

Then a Secret is created as follows:

apiVersion: v1

kind: Secret

metadata:

 name: go-example-app

 namespace: agridatavalue

type: Opaque

data:

 example: ZXhhbXBsZXNlY3JldA==

2.3.2.3 Persistent Volume Claim
A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod. Pods consume node

resources and PVCs consume PV resources. Pods can request specific levels of resources (CPU and Memory).

Claims can request specific size and access modes (e.g., they can be mounted as ReadWriteOnce,

ReadOnlyMany or ReadWriteMany, see the field AccessModes4).

More can be found at https://kubernetes.io/docs/concepts/storage/persistent-volumes/.

An example PersistentVolumeClaim can be seen below:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: go-example-app

 namespace: agridatavalue

 labels:

 type: local

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Mi

The above PersistentVolumeClaim will requests 100MiB storage from the cluster, thus creating a

PersistentVolume.

2.3.2.4 Deployment
A Deployment is essentially a description of a desired state, and the Deployment Controller changes the actual

state to the desired state at a controlled rate. Deployments can be defined to create new ReplicaSets, or to

remove existing Deployments and adopt all their resources with new Deployments. See more:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

An example Deployment can be seen below:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: go-example-app

 namespace: agridatavalue

 labels:

 app: go-example-app

spec:

4 https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 20 of 124

 replicas: 1

 strategy:

 rollingUpdate:

 maxUnavailable: 1

 type: RollingUpdate

 selector:

 matchLabels:

 app: go-example-app

 template:

 metadata:

 labels:

 app: go-example-app

 spec:

 imagePullSecrets:

 - name: agridatavalue-regcred

 containers:

 - name: go-example-app

 image: REGISTRY_IMAGE:REGISTRY_IMAGE_TAG

 imagePullPolicy: Always

 ports:

 - name: go-app-port

 containerPort: 8080

 env:

 - name: EXAMPLE_SECRET

 valueFrom:

 secretKeyRef:

 name: go-example-app

 key: example

 - name: EXAMPLE_CONFIG

 valueFrom:

 configMapKeyRef:

 name: go-example-app

 key: example

 volumeMounts:

 - name: go-app-volume

 mountPath: /opt/app/data

 volumes:

 - name: go-app-volume

 persistentVolumeClaim:

 claimName: go-example-app

You may notice that a typical Deployment combines the previous elements. It defines imagePullSecrets,

containers and volumes, among other things. Various volumeMounts can be configured for the container.

Additionally, an env segment defines essential environment variables, either directly or via values received

from ConfigMap objects and Secret objects, while a port segment defines the ports of the container under

discussion. Please refer to the Deployment's documentation for further information.

2.3.2.5 Service
A Service is a method for exposing a network application that is running as one or more Pods in a K8s cluster.

See more: https://kubernetes.io/docs/concepts/services-networking/service/.

An example Service can be seen below:

apiVersion: v1

kind: Service

metadata:

 name: go-example-app

 namespace: agridatavalue

https://kubernetes.io/docs/concepts/services-networking/service/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 21 of 124

spec:

 selector:

 app: go-example-app

 ports:

 - port: 8080

 targetPort: go-app-port

 protocol: TCP

 type: NodePort

This Service exposes the targetPort, i.e. the port defined as go-app-port in the Deployment to service port 8080.

The type of this specific Service is NodePort which means it will expose the container’s port to the port of the

Kubernetes node.

2.3.3 Deployment platform
A Kubernetes cluster hosted by SYN will host the deployment of ADV components and their subcomponents.

Within this cluster, a specific ADV namespace has been established. The ADV namespace's current

deployments are displayed in Figure 2. Unless other needs arise during the project's duration (e.g., like the

need for an additional namespace or another type of deployment practice), the majority of ADV's components

will be deployed with the setup that is specified. The intercommunication and interoperability of ADV's

subcomponents will be possible through Kubernetes' standard visual network abstraction layer in conjunction

with the relevant Kubernetes services for each component, even if more than one namespace is required.

Figure 2: An instance of the AgriDataValue namespace

Given the importance of data in the ADV context and the cloud-native paradigm that the project is

implementing, cloud-native storage is a must. Based on this, a software storage cluster called Ceph5 and the

open-source Rook framework6 have been used to configure storage. This combination allows for transparent

and easy implementation of effective and configurable storage duplication for the end-user application,

without requiring adherence to specific component design practices.

Figure 3: Storage classes of the Kubernetes cluster

As a final note, docker-compose versions of the deployments will be made available to the component

developers, as Kubernetes might not be accessible to all developers during the coding and debugging

procedures. This will enable the local development process to be simplified and brought closer to the real

environment, which is made possible using containers for both local testing and development.

5 https://ceph.io/en/
6 https://rook.io/

https://ceph.io/en/
https://rook.io/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 22 of 124

3 Decentralised data capture management &

in-situ pre-processing tools
This chapter focuses on Decentralized data capture management and in-situ pre-processing tools to be

implemented in the context of ADV. This collection of tools is going to offer capturing and pre-processing of

data at the edge, leveraging IoT advancements in communications, computational power, and storage, as well

as edge computing. This approach aligns with the in-situ processing paradigm, via the distribution of

processing load and reduction of the amount of transferred data. At the time of this deliverable’s authoring,

the identified toolboxes include:

• the IoT sensors data toolbox (IOTD),

• the Terrestrial Geotagged-Photos (GTP App),

• the Drone Data toolbox (DRD), and

• the Earth Observation Data capturing toolbox (EOD)

These discrete toolboxes, that serve as the main data sources of ADV, comprise a multi-modal data collection

and in-situ pre-processing mechanism that will achieve a complete and accurate representation of knowledge,

to serve ADV’s mission and long-term vision. In the following, more thorough descriptions of the comprising

toolboxes will be presented.

3.1 IoT sensors data toolbox (IOTD)

The IoT sensors data toolbox (IOTD) is the toolbox that focuses on the in-situ monitoring, collection, and pre-

processing of measurements originating in a series of IoT devices and sensors, deployed on the field. The IOTD

toolbox is implemented in the context of Task 3.2: Smart Farming Support and CAP compliance toolbox. The

IOTD toolbox consists of following three main sub-toolboxes:

• Open-Field Crops’ IoT Sensors Data Capturing Toolbox

• Greenhouse / Farm Air Quality & Animals’ Wearable IoT Data Capturing Toolbox, and

• Terrestrial Geotagged-Photos’ Data Capturing Toolbox

The first two toolboxes focus on the collection and pre-processing of measurements originating from sensors

and IoT devices that are deployed on the field, while the third one is focused on the capturing of geotagged

photos via a hand-held device (i.e., a smartphone or tablet) on the field. In the following paragraphs, more

details about the IOTD toolbox as-a-whole, as well as its sub-toolboxes, are provided.

3.1.1 Description
In this paragraph a description of main operation principles for the IOTD toolbox is provided. As stated, the

IOTD toolbox serves as one of the main data sources of ADV, as it enables the real-time monitoring and

collection of measurements originating in a variety of IoT devices and sensors that are deployed on the field

for a series of measurable entities. Moreover, it supports visual information of crops’ status that is, combined

with in-situ measurements.

The Open-Field Crops’ IoT Sensors Data Capturing Toolbox will be based on SynFieldTM, SYN’s flexible sensing

and precision agriculture solution [1]. A SynFieldTM device is depicted in Error! Reference source not found..

For the Open-Field Crops’ IoT Sensors Data Capturing Toolbox the measured entities include, but are not

limited to:

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 23 of 124

• Rain accumulation

• Wind speed & direction

• Air temperature and relative humidity

• Soil temperature, humidity, and electrical conductivity

• Leaf-wetness

• Solar radiation

In addition to this, third-party platforms that are currently utilized in pilot sites

will be integrated, via their APIs (if available and open) to form a complete

solution. With respect to integration of potentially utilized third-party

platforms, priority will be given to the ones that come with an openly

accessible (within the scope of the project), and well-documented API.

Figure 5: A SynAirTM Installation

As far as the Greenhouse / Farm Air Quality & Animal Wearable IoT Data Capturing Toolbox is concerned,

the Greenhouse / Farm Air Quality part of the toolbox will be based on SYN’s SynAirTM [2], a versatile sensor

platform that can support a wide range of air quality sensors, and an extension to SynFieldTM. A SynAirTM

installation is depicted in Figure 6. Like the previous toolbox, if/when existing air quality sensors and/or

historical data are available, they will be integrated into ADV via the APIs they offer. For the Greenhouse/Farm

Air Quality the measured entities include, but are not limited to:

• Temperature

• Relative humidity

• Barometric pressure

• Suspended particles

• Volatile Organic Compounds (VOC)

Figure 4: A SynFieldTM device

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 24 of 124

• Various gases (e.g. CO, CO2, ΝΗ3)

On top of this, with respect to Animals’ Wearable IoT devices, priority will be given to solutions that are

currently utilised by the pilots. In case the currently utilised solutions are not appropriate for integration within

the ADV platform, off-the-shelf smart collars for cows and/or pigs will be utilised, with a preference for

solutions that offer openly accessible, well-documented and ready-to-integrate APIs.

Figure 6: A SynAirTM Installation

The operational principles of the previous sub-toolboxes are identical. IoT devices and sensors are deployed

on the field, whether this is an open-field, greenhouse, farm or a stable. The deployed sensors are connected

either wired or wirelessly to a gateway that collects their measurements, performs an appropriate pre-

processing at the edge (i.e., at the gateway), and stores (publishes) them to another remote location for

further processing if/when needed by other components of the ADV platform. The recorded measurements

are available, accessible and can be visualised on a per-user basis via a relevant user interface (UI).

Finally, the Terrestrial Geotagged-Photos’ Data Capturing Toolbox, offers a visual indication of crops’ state

and will serve as input to plant disease prediction and prevention procedures that will be developed within

ADV. From the end-user aspect, this toolbox will be realized as a hand-held device, i.e. smartphone or tablet,

offering the user the ability to capture photos of plants’ leaves or other aspects.

It should now be clear to the reader, that the multi-modal data collection will offer a complete overview of

the monitored entity’s status.

3.1.2 Development view

3.1.2.1 Component diagram
Figure 7 depicts the component diagram of the IOTD toolbox. In this diagram, the sub-components of the IOTD

toolbox are presented, and their internal, as well as external interactions are captured. The IOTD toolbox is

comprised of an IoT sensors Northbound API, which is utilized by IoT sensors to interact with the SynFieldTM

and SynAirTM devices. SynField forwards the collected measurements to the ADV Data Model Translator, which

is also the point-of-entry for third-party platforms that will be integrated within ADV. The translated

measurements are then going to be either published to other ADV components (IDS, STORE, Kafka Message

Bus) or be accessible via an appropriate API. This is the job of the ADV-adapted data publisher & API sub-

component. Finally, leveraging the aforementioned API, an IOTD User Interface will be available to the end-

users of the toolbox/ADV platform.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 25 of 124

Figure 7: Component diagram for the IOTD Toolbox

3.1.2.2 Building blocks

3.1.2.2.1 IoT sensors Northbound API

The IoT sensors Northbound API is the IOTD component via which the IoT sensors interact with the toolbox in

order to record their collected measurements. The IoT sensors Northbound API is a low-level API consisting of

multiple device drivers to support the communication with sensors, management, and data collection. A deep

understanding of these low-level interactions between sensors and the actual SynFieldΤΜ nodes is considered

out of scope for this deliverable. However, we should note that the IoT sensors Northbound API is

implemented in its entirety by SynFieldTM. In case of third-party platform utilisation, the implementation or

adaptation of any available third-party APIs is not within the scope of the project, unless an owner/contributor

of the third-party platform is willing to make an adaptation that is considered necessary. Nevertheless, in case

the supported collection of sensors is not considered adequate and new needs occur within the duration of

the project, the IoT sensors Northbound API will be expanded to support these additional sensors.

3.1.2.2.2 ADV Data model translator

The ADV Data model translator (DMT), or simply ADV adapter, is a subcomponent of IOTD that focuses on the

translation of measurements received via SynFieldTM, SynAirTM, or a third-party platform, to the ADV data

model. DMT is considered a vital part of the IOTD toolbox, and the ADV overall because it serves as an enabler

for the interoperability between, not only the components of ADV, but also the numerous heterogeneous

devices that are going to be integrated within the toolbox. For the third-party platforms that will be integrated

within the ADV, the ADV Data model translator will be the point of entry.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 26 of 124

In the current version of the toolboxes, the initial focus of this sub-component is to map the toolbox entities,

like sensors, measurements, fields, parcels, etc., to the Agricultural Information Model (AIM), before

proceeding to the integration of the IDS part of the ADV data model. It should be noted that priority has been

given to the translation / adaptation of the SynFieldTM measurements to the ADV data model before the APIs

of other third-party platforms follow.

3.1.2.2.3 ADV-adapted data publisher & API

The ADV-adapted data publisher is a subcomponent of IOTD that serves as a publisher for the collected

measurements. It is responsible for communicating the collected and pre-processed measurements to other

ADV components, as needed. The publisher is going to support the saving of measurements to the STORE

component, their communication to IDS connector, and, of course, their publishing to the central Kafka bus of

the ADV platform. Furthermore, the ADV-adapted data publisher is going to offer an API for the retrieval of

measurements on per-user basis.

3.1.2.2.4 IOTD User Interface (UI)

The IOTD User Interface (UI) is going to serve as the user interface for the toolbox, a place where the end-

users will be able to visualize all the collected measurements for their fields, greenhouses, farms, stables, or

any place where a sensor or IoT device is deployed. The end-users will be able to view their fields or areas of

interest, according to their sensor installations. On top of this, photos that are captured via the Terrestrial

Geotagged-Photos Data Capturing Toolbox will be visualized via both the relevant mobile application, and

possibly via the IOTD UI.

3.1.3 Process view

3.1.3.1 Sequence diagram
Figure 8 presents a simplified sequence diagram for the IOTD component that depicts the flow of information

within the toolbox. Raw data initially received from the deployed sensors and IoT devices arrive to SynAir and

SynField nodes via the IoT sensors Northbound API. SynField gathers measurements concerning air, soil, wind,

and rain directly from the Northbound API, as well as measurements concerning air-quality from SynAir. The

processed measurements are then forwarded to the ADV Data Model translator, together with measurements

originating in potentially integrated third-party platforms. These processed measurements are then made

available to the ADV-adapted data publisher and are accessible on a per-user basis via the exposed web API.

Finally, the processed and translated measurements are available for the end-user via the IOTD UI.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 27 of 124

Figure 8: Simplified sequence diagram for the IOTD toolbox

3.1.4 Interfaces

3.1.4.1 Data models used in interfaces
As already mentioned in previous paragraphs, the adopted ADV data model will be a combination of the

Agricultural Information Model (AIM) and other IDS essential components. At the current phase of the project,

the mapping between measurements and AIM entities has been the focus concerning the ADV data model.

Since the components of IOTD are in a state of intensive development, the current version of the mapping is

not considered stable, and it is preferred to not be recorded in this deliverable. This mapping is currently in

progress and the plan is to be completed in the following month(s).

3.1.4.2 Description of APIs
Like the ADV data model and interfaces, the APIs and Kafka message formats for IOTD are not currently stable

and will not be recorded in the present document. However, deliverable D3.2, which will focus on the IOTD

toolbox, is going to include detailed descriptions of the IOTD toolbox and its sub-components (sub-toolboxes).

3.1.5 Technologies and implementation details
In this paragraph, the employed technologies are briefly described. To begin with, the IoT sensors Northbound

API, already implemented and inherent in the SynFieldTM hardware platform is a low-level API, implemented

in C/C++ and the specifics of its implementation are out-of-scope of this project.

The ADV Data model translator will be implemented in Python 7 , leveraging Django 8 and Celery 9 for

asynchronous task execution.

7 https://www.python.org/
8 https://www.djangoproject.com/
9 https://docs.celeryq.dev/en/stable/

https://www.python.org/
https://www.djangoproject.com/
https://docs.celeryq.dev/en/stable/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 28 of 124

The ADV-adapted data publisher & API will be implemented in Python as well, leveraging PostgreSQL and

PostGIS10, Celery, MinIO11 and GDAL12, and it will be able to interface with Kafka, MinIO and PostgreSQL for

the storage/publishing of measurements. The API part of this component will be implemented in Django and

Django REST Framework13, and it will be served via a combination of Nginx14 and Gunicorn15. Swagger16

documentation of the API will be available for smoother integration with other ADV components that might

need to access it.

Finally, the IOTD UI component, though its development has not yet launched, will be implemented in either

React17 or Vue.js18, leveraging a collection of built-ins and tools.

Since the IOTD toolbox is still under development, a complete list of the utilised technologies will be offered

in deliverable D3.2, which will present the first version of the Smart Farming Support and CAP compliance

toolbox.

3.2 Terrestrial Geotagged-Photos (GTP App) Data Capturing

Toolbox

The agricultural industry and in particular the farming community has constantly faced the threat of pests and

environmental disruptions and is being considered a severe threat for food security and economic stability for

both farmers and general public [3]. Traditionally, such challenges are addressed through the local knowledge

of farmers which has been passed down through generations and has paved the way for mitigating some of

the impact of pests. While the use of advanced scientific tools and solutions have been largely adopted by

various industrial sectors in the European region, the use of mobile computation and cloud deployment of

deep-learning network models for the automation of agricultural services has not been fully exploited. Among

the several types of agricultural plants which are affected by pests, infestation of leaves is regarded to have

the maximum impact upon the food production. To address this challenge, the Terrestrial Geotagged-Photos

Capturing Toolbox (GTP App, the commercial reference to be adopted within this chapter and within the

project) is designed to establish a seamless process to be adopted by farmers to keep track of the crop health.

3.2.1 Description
The GTP App is built on the premise that following the pervasive use of mobile technologies, the farmers could

be equipped with a simple application that would allow them to capture and upload the relevant visual

information gathered from the field and assess the quality of the crop along with the identification of any

potential pest outbreak. The pictures captured by the application is geotagged for marking the spatial location

using Global Positioning System (GPS) information often associated with the latitude and longitude measures.

The novelty of the proposed application is the ability to function when operated under uncontrolled

environment and requires no additional intervention from the farmers to complete the processing. The

10 https://postgis.net/
11 https://min.io/
12 https://gdal.org/index.html
13 https://www.django-rest-framework.org/
14 https://www.nginx.com/
15 https://gunicorn.org/
16 https://swagger.io/
17 https://react.dev/
18 https://vuejs.org/

https://postgis.net/
https://min.io/
https://gdal.org/index.html
https://www.django-rest-framework.org/
https://www.nginx.com/
https://gunicorn.org/
https://swagger.io/
https://react.dev/
https://vuejs.org/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 29 of 124

information gathered by the farmers is subsequently processed in the cloud and the result is then passed on

to the farmer with additional domain knowledge on the health state of the crop or with additional information

about the nature of the pest that is infecting the crop quality.

3.2.2 Development view

3.2.2.1 Component diagram
The component diagram of the GTP App is presented in Figure 9, which represents two components under

development. The GTP application side depicts the end-user interface that is presented to the farmers with

different user screens being accessible to the farmers. The component indicating the user interface, is

presented to the farmers and includes simple interaction guidelines. The information presented in the

application has been validated for the user-centric approach that has been adopted and provides a user-

friendly transition from screen to screen. The design choices adopted in the application offers an intuitive user

interaction and requires no further training or support to use the application. The application also integrates

several technical components that are hidden from the user. The use of the local storage component allows

the application to cache most relevant information to be presented to the users. The image capture model

interfaces with the camera API available within the mobile operating system (OS) to enable image capture.

The geo-location service allows for the users to tag the location of the image that is being captured.

Additionally, the communication module enables data exchange with the backend services referred to as GTP

server side.

The GTP server side integrates the user authentication and authorisation services and furthermore integrates

the complex computation of image analytics and AI algorithms that provide classification outcomes to

represent the health of the crop under consideration. Additionally, data aggregation and data annotation

components are integrated as two key backend services. A detailed description of these components is

presented in the next section.

Figure 9 - GTP Application with the front end and backend processing

GTP application side

Core Data

Local storage

Archiving User defaults

Communication

Protocols

Web service client

Image capture

Camera API

GTP server side

JSON

format

Data annotation

Authentication & Authorisation

Machine learning Image analytics

Geo-tracking

Geo-location

Off-line mode

UX

User Interface

Animations

API middleware

Classification

Recognition

Augmentation

Segmentation

Upsampling

Manual

Data aggregation

Data storage

Knowledge &

Data modelling

Machine

generated

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 30 of 124

3.2.2.2 Building blocks

3.2.2.2.1 Image capture

The image capture module directly leverages the functionality of the underlying operating system of the

mobile platform and allows the farmers to capture the images of the leaf under consideration. The camera

screen navigation is directly enabled from the main screen of the GTP application.

3.2.2.2.2 Geo-location

The geo-location services interface the Open Street Map (OSM) like services to allow the farmers to assign and

tag the latitude and longitude measures associated to the region. The information once assigned to the image

that has been captured will be stored in the local storage and bundled into a single package of information

that will be transmitted to the backend services.

3.2.2.2.3 Communication protocols

The communication protocols module integrates multi-stack services that allows the data exchange and

communication to take place from the mobile application to the backend services. The communication API

seamlessly integrates with the available communication mode of operation such as WiFi and mobile network.

It is also noted that in case if there is no network coverage available across the farming field, the image

captured and packaged with the GPS coordinate will be stored in the cache and once the network is re-

established the cached information will be posted to the backend system, in background mode of operation

that requires no intervention from the users.

3.2.2.2.4 Image analytics

Once the image collected have successfully been posted to the backend server for postprocessing, a data

handling pipeline is initiated, in which the algorithms for augmentation, segmentation, super-resolution are

applied to improve the overall quality of the images that have been gathered from the field. The sequence of

algorithms that have been applied enables the processing of images collected from uncontrolled environment

that is most suited for farmers to capture the data from the field.

3.2.2.2.5 Machine learning

The pre-processed images from the image analytics pipeline are then subsequently subjected to the

classification model that integrates classes of pest. The network will be trained with the most commonly

occurring pest categories that affect the leaf. The outcome from the machine learning algorithm will be used

to generate a report on the status of the leaf, with the domain knowledge gathered from experts that will be

sent back to the farmers as a report.

3.2.2.2.6 Data aggregation

This component represents the necessary of information that is needed to be gathered on the knowledge of

pest categories, their impact on the leaf and the impact on the neighbouring trees as pests often do tend to

spread from one crop to another. The knowledge model used will incorporate the information that is needed

to be presented to the farmer to enrich the information about the state of the crop. Additionally, the

knowledge needed for the farmer to take preventive and mitigation steps as required to protect crop quality.

3.2.2.2.7 Data annotation

The component forms one of the core elements of the GTP App, which holds the annotated data representing

the pests. The GTP app will adopt two forms of data annotation processes, namely manual process and

machine-generated. The annotated results that are generated from the machine learning algorithm will be

continually monitored and managed to improve the quality of the training and by automating the process of

annotation using pre-trained models.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 31 of 124

3.2.3 Process view

3.2.3.1 Sequence diagram
The sequence diagram of interactions that take place between the different components of the application is

presented in Figure 10.

Figure 10 - Geotagged Photo-App sequence diagram

3.2.4 Interfaces

3.2.4.1 Data models used in interfaces
The GTP App will extend the data model adopted in ADV, which has been derived from AIM ontology

specification. As this information space is less populated with the list of concepts related to the pests, the

knowledge gained in ADV will be subsequently added to the data model. Additionally, JSON-based

representation of data will be adopted for the integration of the component and services that were outlined

in the earlier section.

3.2.4.2 Description of APIs
It is important to note that the GTP App distribution is aimed at multiple front-end users (farmers) while the

deployment of the server will be aimed at handling multiple requests that are being received from farmers.

Therefore, the communication protocols implemented in the GTP App front end will adopt a stateless

implementation and use RESTFul API services to exchange information back to the server. Similarly, the

frontend will also implement an asynchronous protocols service to receive information on the pest categories

after processing from the backend.

3.2.4.3 Technologies and implementation details
The GTP App will use the latest release of software stack including support extended for the Android platform

for the front end, with Python and Java services being used for the backend services. The backend system will

also implement necessary interfaces required to handle large volume of data that is generated and shared

with the backend services to be processed and analysed.

3.3 Drone data toolbox (DRD)

The Drone Data Toolbox (DRD) is one of the main data sources of ADV, along with IOTD and EOD toolboxes.

As a data source it can be considered complementary to the EOD toolbox, rather than the IOTD toolbox, which

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 32 of 124

interfaces with lower-level entities, such as IoT sensors and other devices. The main mission of the DRD

toolbox is to support the capturing and post-processing of aerial geotagged photos. As such, the drone and

the utilized camera are considered a vital part of the toolbox with respect to data capturing, while the

processing of the captured images, when combined with data originating in EOD and IOTD toolboxes will offer

a complete understanding of the monitored entities’ (i.e., fields) state.

3.3.1 Description
DRD implements what is described as Aerial Geotagged-Photos’ Data Capturing Toolbox in the context of Task

4.2 Climate Monitoring and CAP compliance toolbox. In this context, a multispectral camera will be embedded

/ suspended on a drone to capture georeferenced images of fields’ crops, for these images to be post-

processed for extraction of useful information. The combination of drones and multispectral cameras, enables

timely and informed decisions on crop management, given that an appropriate post-processing of the

captured photos is conducted. One of

the key advantages of such a drone-

based toolbox is scalability, as drones

can perform flights over large fields

quickly in order to collect multispectral

data from a variety of angles.

The fundamental operational principles

of the DRD toolbox are two-fold.

Initially, a pilot with an appropriate

training is going to fly the drone over

zones of interest and capture

georeferenced photos of the zones’

states. The georeferenced captured

photos will be initially post-processed to

match the satellite earth observation

data, offered by the EOD toolbox. From

this point onwards, the post-processing

of the captured photos will compute a

variety of vegetation health indices that

can be extracted from the captured

photos. Details about the

implementation of the DRD are

presented in the following sections.

3.3.2 Development view

3.3.2.1 Component diagram
DRD toolbox is composed of four sub-components, a drone, a multispectral camera, the Aerial Image

Processing Toolkit (AIPT) and the DRD Extractor and API. The drone and the multispectral camera are the

components responsible for the collection of field images, while the AIPT performs the essential post-

processing on the captured data, computing various vegetation indices and other features. Finally, the DRD

Extractor and API component serves as an interface to other components of ADV. Error! Reference source not

found. depicts the internal architecture of the DRD toolbox. More information about the subcomponents can

be found in the following sections.

Figure 11: DRD Toolbox component diagram

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 33 of 124

3.3.2.2 Building blocks

3.3.2.2.1 Drone

Naturally, the drone is one of the main building blocks of the DRD toolbox. A drone that is currently available

and intended for use within the context of ADV is the DJI Matrice 600 Pro19. This drone does not come with an

embedded camera, yet its design and high payload capacity allow for the stable suspension of external

cameras. This model is equipped with six rotors that provide redundancy and stability, allowing for safer and

more reliable flight operations. Most importantly, the drone supports multiple GPS systems for enhanced

accuracy. As the project progresses, and the requirements of the DRD toolbox become more apparent,

additional drone solutions might be investigated.

Figure 12: DJI Matrice 600 Pro

3.3.2.2.2 Multispectral Camera

The multispectral camera is probably the most essential component of the DRD toolbox. A multispectral

camera captures different spectra or images beyond the range visible to the human eye, while multispectral

images are widely used in a series of remote sensing applications. A camera that is currently available is the

Parrot Sequoia+. This camera captures data in multiple spectral bands, including RGB and Near Infrared (NIR),

thus allowing for detailed analysis of vegetation health. Moreover, when combined with the Sunshine Sensor,

this camera captures and produces geotagged photos, thus automatically resolving the geo-reference part of

the essential post-processing procedures. Once again, though Parrot Sequoia is going to be the starting point

of the DRD toolbox, other solutions might be investigated depending on the various use case needs.

Figure 13: Parrot Sequoia+

19 https://www.dji.com/gr/matrice600-pro

https://www.dji.com/gr/matrice600-pro

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 34 of 124

3.3.2.2.3 Aerial Image Processing Toolbox (AIPT)

The Aerial Image Processing Toolbox (AIPT) is the component of DRD that will perform the post-processing of

the captured aerial images. AIPT will initially focus on the computation of various vegetation indices. These

indices can be extracted, leveraging the spectral bands that are captured by the multispectral camera, such as

RGB and Near-Infrared (NIR). An indicative list of vegetation indices (VIs) follows:

• Normalized Difference Vegetation Index (NDVI): NDVI is an index that is widely used to assess the

health and density of vegetation, with higher values indicating healthier vegetation. It utilizes the Near

Infrared (NIR) and red bands. NDVI can be computed as follows:

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑

• Normalized Difference Water Index (NDWI): NDWI is used to detect the presence of water in

vegetation. It is sensitive to changes in water content, helping to identify water bodies while

simultaneously monitoring changes in soil moisture. Its computation is based on the NIR and green

bands:

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅

• Enhanced Vegetation Index (EVI): EVI is an improvement of NDVI, designed to minimize the influence

of atmosphere and soil background noise. As such, it provides a more accurate representation of

vegetation health. The NIR, red and blue bands are utilized for its computation:

𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 × 𝑅𝑒𝑑 − 7.5 × 𝐵𝑙𝑢𝑒 + 1

• Green Normalized Difference Vegetation Index (GNDVI): GNDVI is an index similar to NDVI, but it

utilizes the green band instead of the red. It is useful for assessing vegetation in areas with high soil

reflectance, and is computed as follows:

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛

The initial version of the AIPT will focus on the computation of these indices. However, additional post-

processing steps might be taken according to cater for other ADV components’ needs, possibly implementing

a feature extraction procedure if/when essential.

3.3.2.2.4 DRD Extractor and API

The DRD Extractor and API is the component of the DRD Toolbox that will serve as an interface to other

components of ADV. The API is going to offer endpoints for the retrieval of computed image features and

indices. Moreover, depending on other ADV components’ needs, this component will offer the capability of

batch extraction of computed features and indices, as well as potentially the publishing of those features to

the central Kafka message bus.

3.3.3 Process view

3.3.3.1 Sequence diagram
A sequence diagram of the DRD toolbox is depicted in Figure 14. The flow is quite simple, and it begins with

the capturing of aerial geotagged images with the help of the drone and a multispectral camera. The collected

images are fed as input to the Aerial Image Processing Toolkit (AIPT). After the post-processing of the captured

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 35 of 124

images is completed, various computed features become available to other ADV components via the DRD

Extractor and API.

Figure 14: DRD Toolbox sequence diagram

3.3.4 Interfaces

3.3.4.1 Data models used in interfaces
The DRD toolbox will adopt the ADV Data Model, mainly with respect to the communication of image features

and indices, to be then processed by other ADV components. Since the toolbox, as well as the ADV data model,

is under development and not yet in a stable version, we skip the definition of interfaces for deliverable D4.1.

3.3.4.2 Description of APIs
The DRD Toolbox’s API will offer a collection of endpoints for the retrieval of the computed features and

indices. As the toolbox is currently under development and an API is not yet available, a detailed description

of the offered API will be included in deliverable D4.1.

3.3.5 Technologies and implementation details
This paragraph presents a brief description of the technologies that will be employed for the implementation

of the DRD toolbox. To begin with, as already mentioned in the previous paragraphs, the drone that will be

used in the context of the toolbox is the DJI Matrice 600 Pro20, and it will be combined with the Parrot

Sequoia+21 multispectral camera.

The AIPT will be generally implemented in Python, utilizing various computer vision and image processing

packages, such as OpenCV22, Pillow23, and Numpy24.

Finally, the DRD Extractor and API will be implemented in Python, and specifically Django and Django REST

Framework. Essential packages that will be utilized include Celery, GDAL, and PostGIS.

20 https://www.dji.com/gr/matrice600-pro
21 https://www.parrot.com/en/support/documentation/sequoia
22 https://opencv.org/
23 https://python-pillow.org/
24 https://numpy.org/

https://www.dji.com/gr/matrice600-pro
https://www.parrot.com/en/support/documentation/sequoia
https://opencv.org/
https://python-pillow.org/
https://numpy.org/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 36 of 124

3.4 Satellite Earth Observation Data Capturing toolbox (EOD)

3.4.1 Description
The Satellite Earth Observation Data Capturing Toolbox (EOD) will utilize the Sentinel Hub platform which is a

comprehensive geospatial platform and service provider that specializes in processing, analysing, and

delivering satellite imagery and other Earth observation data, including Drone imagery. It offers a wide range

of services and functionalities to support various applications in fields such as agriculture, environmental

monitoring, disaster management, urban planning, and more.

It enables access to Earth observation (EO) data, primarily from Copernicus satellites (Sentinel 1, Sentinel 2,

...), while also supporting other sources like Landsat, Modis, Planet, and more – a full list of available satellite-

based and other raster datasets can be found here at the sentinel documentation webpage25. It also enables

users to add their own data to the platform, which can be leveraged for the Drone Data Toolbox as well. By

utilizing cloud infrastructure and innovative techniques, it efficiently processes and delivers data within

seconds. This capability can be seamlessly integrated into any web mapping application, offering a user-

friendly and cost-effective solution for utilizing the data within the means of the project.

Sentinel Hub APIs (Application Programming Interfaces) are a set of application programming interfaces (APIs)

that enable developers to access, retrieve interact with and utilize satellite imagery and other geospatial data

provided by Sentinel Hub. The main APIs offered by Sentinel Hub are:

• Sentinel Hub Process API: Enables users to perform advanced processing tasks on satellite data. It

supports the creation of custom image processing chains using a wide range of algorithms, including

filtering, band math, index computation, etc.

• Sentinel Hub Batch API: The Batch API allows users to execute large-scale processing tasks on a

collection of satellite images. It provides a mechanism for efficient batch processing, enabling tasks

such as generating time-lapse animations, running time-series analysis, and performing machine

learning workflows on large numbers of images.

• Sentinel Hub Statistical API: The Statistical API allows users to extract statistical information from

satellite imagery without the need for downloading the imagery. It provides functionalities like

calculating pixel values within specific regions of interest and generating statistical summaries such as

mean, median, standard deviation, and percentiles.

• Sentinel Hub BYOC API: The BYOC (Bring Your Own Collection) API allows users to leverage their own

imagery data within the Sentinel Hub platform. BYOC enables the integration and analysis of custom

data collections alongside the vast repository of Sentinel satellite data. By leveraging the BYOC API,

users can tap into the advanced processing capabilities of the Sentinel Hub platform. Users can

upload, manage, and access their own imagery datasets, such as high-resolution satellite images or

aerial photographs, and seamlessly combine them with the existing Sentinel satellite data for analysis

and visualization. The entirety of the geospatial raster dataset generated during the project will be

accessed through the Sentinel Hub BYOC API.

• Sentinel Hub Catalog API: Sentinel Hub Catalog API (or shortly "Catalog") is an API implementing the

Spatio Temporal Assets Catalog (STAC) Specification 26 , describing geospatial information about

different data used with Sentinel Hub. The Catalog API enables users to query and access information

about available satellite imagery products and metadata

25 https://docs.sentinel-hub.com/api/latest/data/
26 https://stacspec.org/en

https://docs.sentinel-hub.com/api/latest/data/
https://stacspec.org/en

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 37 of 124

• Open Geospatial Consortium (OGC) services: Sentinel Hub also supports WMS/WMTS/WCS OGC

services.

3.4.2 Development view

3.4.2.1 Component diagram

Figure 15: EOD - Component diagram

3.4.2.2 Building blocks
The service’s main components are the Catalogue service, Data processing and Rendering service, Custom

Scripting engine, and then the Support, POST API and WMS/WMTS/WCS interfaces which provide access to

the data and various data manipulation options. In more detail, the main components are:

• Catalogue service. Contains relevant meta-data about all available scenes, allowing efficient (10ms

response time) identification of scenes available in the area of interest on the basis of user-defined

parameters (time range, cloud coverage, sensor type, etc.).

• Data processing and rendering service. Takes the information of the processing configuration (e.g.

combination of bands or more selection of a more complex algorithm) as an input and processes data

in real-time, queries the Catalogue service for a chosen AOI, downloads the necessary data from the

on-line storage and decompresses it.

• Custom scripting engine. Allows the user to input an algorithm defining pixel-based data processing.

A series of open-source custom scripts libraries are available, making it easier for users to start utilizing

the library’s functionality.

• Data Support. Support is provided for Sentinel-1 GRD, Sentinel-2 (L1C and L2A), Sentinel-3 OLCI,

Sentinel-5P, Landsat-5, -7, -8, Envisat MERIS and MODIS data. All products are supported both from

the technical aspect of data manipulation (data processing, meta-data), as well as the aspect of

implementation (operational deployment).

• POST API and WMS/WMTS/WCS interfaces. The Statistical API provides faster access to higher-level

information (e.g. max/min/mean values of a specific index over time).

3.4.3 Process view
In Figure 16 below we show a graphic displaying the role of Sentinel Hub in providing access to various kinds

of imagery, such as Open Imagery (i.e. Sentinel-2, Landsat), Commercial Imagery (imagery from commercial

satellite data providers), other raster data such as CORINE land cover layers, digital elevation models and

similar.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 38 of 124

Figure 16: Sentinel Hub diagram. Sentinel Hub allows access to various kinds of raster imagery data (i.e. Copernicus
Open Data, custom imagery (Drone), raster model results) via a set of custom OGC compliant API endpoints.

Sentinel Hub also allows ingestion and access to custom raster imagery, such as results of various geospatial

models, crop type maps and similar. The access to this imagery is either through Sentinel Hub’s RESTful APIs27

or through it is OGC API, which makes it easy to integrate into various other platforms.

3.4.3.1 Sequence diagram

Figure 17: EOD - Sequence diagram

When the EOD Toolbox (which also supports and interacts with the DRD toolbox) gets a request for imagery

from other components of the platform (Edge Cloud Analytics Suite, AI Based Cloud Platform) it then processes

the request, based on the request parameters, it fetches the appropriate imagery from the cloud storage and

processes it appropriately based on the user-provided processing options. The result is then sent back to the

requesting component in the format that was requested.

3.4.4 Interfaces

3.4.4.1 Data models used in interfaces
Since Sentinel Hub provides access to petabytes of imagery which can not be JSON serializable, we are

providing STAC compliant metadata of the imagery relevant for the other components. STAC is a standardized

way to expose collections of spatial temporal data.

27 https://www.sentinel-hub.com/develop/api/

https://www.sentinel-hub.com/develop/api/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 39 of 124

Sentinel

Hub Catalog

Collection

Info28

 Provides full list of metadata for the Feature Collection. This information describes the data that

is available in a SH collection. It is fully STAC29 compliant.

Property Type Description

stac_versio

n
String The STAC version of the catalog.

Type String

id String Identifier of the collection used.

title String Human readable title of the collection.

keywords Array of strings List of keywords describing the collection

license String License of the data as a SPDX30 License identifier.

Extent
Object

(CatalogExtent)

The extent of the features in the collection. In the Core only spatial and

temporal extents are specified. Extensions may add additional members to

represent other extents, for example, thermal or pressure ranges. The first

item in the array describes the overall extent of the data. All subsequent

items describe more precise extents, e.g., to identify clusters of data. Clients

only interested in the overall extent will only need to access the first item in

each array.

providers Array of objects

A list of providers, which may include all organizations capturing or

processing the data or the hosting provider. Providers should be listed in

chronological order with the most recent provider being the last element of

the list.

Summaries Dictionary

Summaries are either a unique set of all available values or statistics.

Statistics by default only specify the range (minimum and maximum values)

but can optionally be accompanied by additional statistical values. The

range can specify the potential range of values.

Links Object
Links (with some metadata) to the APIs where the associated item can be

retrieved.

28 https://docs.sentinel-hub.com/api/latest/reference/#tag/catalog_collections/operation/getCatalogCollection
29 https://stacspec.org/en
30 https://spdx.org/licenses/

https://docs.sentinel-hub.com/api/latest/reference/#tag/catalog_collections/operation/getCatalogCollection
https://stacspec.org/en
https://spdx.org/licenses/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 40 of 124

Sentinel Hub

Catalog Tile

Info31

 Provides information about a specific tile from the collection.

Property Type Description

stac_version String The STAC version of the catalog.

Type String

id String Identifier of the tile.

bbox
Array

of numbers

The bounding box is provided as four or six numbers, depending on whether

the coordinate reference system includes a vertical axis (elevation or depth):

• Lower left corner, coordinate axis 1
• Lower left corner, coordinate axis 2
• Lower left corner, coordinate axis 3 (optional)
• Upper right corner, coordinate axis 1
• Upper right corner, coordinate axis 2
• Upper right corner, coordinate axis 3 (optional)

The coordinate reference system of the values is WGS84 longitude/latitude

(http://www.opengis.net/def/crs/OGC/1.3/CRS84).

geometry Geometry Geometry of the tile provided as a GeoJSON object.

type String The GeoJSON type.

properties

Object

(CatalogProp

erties)
Provides the core STAC metadata fields (i.e. datetime) plus extensions

Summaries Dictionary

Summaries are either a unique set of all available values or statistics.

Statistics by default only specify the range (minimum and maximum values),

but can optionally be accompanied by additional statistical values. The

range can specify the potential range of values.

Assets

Object

(Catalog

Assets)

Provides additional information about the assets.

3.4.4.2 Description of APIs
The EOD API description can be found in Annex I while the BYOC and Catalog APIs are described in detail in

the public documentation of the service:

• BYOC: https://docs.sentinel-hub.com/api/latest/api/byoc/

• Catalogue API: https://docs.sentinel-hub.com/api/latest/api/catalog/

31 https://docs.sentinel-hub.com/api/latest/reference/#tag/catalog_item_search/operation/getCatalogItemSearch

http://www.opengis.net/def/crs/OGC/1.3/CRS84
https://docs.sentinel-hub.com/api/latest/api/byoc/
https://docs.sentinel-hub.com/api/latest/api/catalog/
https://docs.sentinel-hub.com/api/latest/reference/#tag/catalog_item_search/operation/getCatalogItemSearch

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 41 of 124

3.4.5 Technologies and implementation details
Sentinel Hub is a proprietary platform for which the implementation details are not shared publicly. We do

however offer a suite of open-source Python frameworks to make processing of earth observations data

obtained from Sentinel Hub easier. These are:

• eo-learn32 is a collection of open-source Python packages developed to seamlessly access and process

spatio-temporal image sequences acquired by any satellite fleet in a timely and automatic manner. It

was developed within the PerceptiveSentinel H2020 project. It is easy to use, modular, and encourages

collaboration – sharing and reusing of specific tasks in a typical EO-value-extraction workflow, such as

cloud masking, image co-registration, feature extraction, classification, etc. The eo-learn library

heavily utilizes the following technologies: Python (with libraries for scientific computing), GDAL, PROJ.

Also heavily used is the standard python stack of geospatial tools: geopandas33, rasterio34.

• eo-grow35: Although eo-learn has the functionality to scale up, it is not enough. Issue that we have

repeatedly run into was the reproducibility and traceability of the experiments. On top of that, we

wanted the capability of coordinating several machines to do the work over large areas. The tagline

of eo-grow library is “Earth observation framework for scaled-up processing in Python”. Working with

EO data is facilitated by the eo-learn package, while the eo-grow package takes care of running the

solutions at a large scale. eo-grow library has been developed within the scope of the Global Earth

Monitor (GEM) Horizon project. The technology utilized by eo-grow for scaling is Ray — Ray is an

open-source unified compute framework that makes it easy to scale AI and Python workloads — from

reinforcement learning to deep learning tuning, and model serving.

32 https://github.com/sentinel-hub/eo-learn
33 https://geopandas.org/en/stable/
34 https://rasterio.readthedocs.io/en/stable/
35 https://github.com/sentinel-hub/eo-grow

https://github.com/sentinel-hub/eo-learn
https://geopandas.org/en/stable/
https://rasterio.readthedocs.io/en/stable/
https://github.com/sentinel-hub/eo-grow

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 42 of 124

4 Edge Cloud Analytics Suite
The Edge Cloud Analytics Suite aims at training and serving Decision Support Systems (DSS), particularly

focusing on the realm of Artificial Intelligence (AI), and more specifically Deep Learning (DL) models, tailored

for applications within the agri-food supply chain. To generate semi-trained models leveraging in-situ,

regional, and global data across diverse entities in an efficient, scalable, and secure way, AgriDataValue

advocates for the adoption of a Federated Deep Machine Learning (FDML) strategy combined with Privacy-

preserving Machine Learning (ML) algorithms. In this way, AgriDataValue will enable distributed training of

models at the edge without necessitating data sharing among users, while avoiding the leakage of private

information throughout the process. It will also enable the combination of localized models into a

comprehensive global model that gathers knowledge from diverse data sources. Finally, this framework will

facilitate the usage of these global models at the edge while maintaining minimal processing requirements.

Furthermore, in a concerted effort to enhance the platform’s user experience and instill confidence in its

offerings, AgriDataValue introduces Explainable AI (XAI) predictive modeling. This augmentation aims to

furnish transparency to the federated-trained algorithms, thereby empowering users with insights into model

decisions incrementing the trust in the platform, its models, and subsequent recommendations.

In this way, the functionality of the Edge Cloud Analytics Suite is divided into two different components

reflected in the initial architecture of the platform: FDML and XAI, described in more detail in Sections 4.1 and

4.2 respectively.

4.1 Federated Machine Learning (FDML)

4.1.1 Description
The FDML component offers a framework designed to train and serve AI and Deep Learning (DL) models, with

data from diverse sources and entities.

Federated Learning (FL) [4] is a distributed approach that enables training models across several decentralized

edge devices that possess private local data, avoiding exchanging any private information. In this way, instead

of centralizing data on a single server, FL allows model training to occur on individual devices housing the

respective data. The conventional FL strategy involves two distinct types of agents (usually called FL agents):

the clients and the server. Clients refer to devices with access to private local data and with sufficient

computational capabilities to conduct ML model training. After training this model, usually referred to as local

models, the clients share their model parameters or weights with the server. On the other hand, the server is

responsible for orchestrating the FL process. It generally initializes the model and sends it to the clients. Once

the local models are received, the server aggregates these models to create a model with knowledge earned

from all the data sources. This model is generally referred to as the global model.

Specifically, AgriDataValue proposes a Hierarchical Federated Learning (HFL) [5] strategy to enhance the

learning process. HFL extends the traditional FL approach by introducing a hierarchical structure among

participating devices. As can be seen in Figure 18 and Figure 19, rather than a flat structure where all clients

connect directly to a central server, HFL organizes devices into layers or levels.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 43 of 124

Figure 18: Conventional FL example architecture

Figure 19: FDML -Generic HFL topology

In this way, servers in an HFL strategy orchestrate a FL process wherein the clients are devices within a lower

layer of the hierarchy, and the aggregated model is sent to the associated server in a higher layer. It is

important to remark that the top-tier server in the hierarchy, typically known as the root server, manages the

process of global model generation, often referred to as cross-silo FL. In contrast, intermediate servers,

positioned in the middle layers, orchestrate intra-silo FL.

Establishing this hierarchy optimizes training efficiency in terms of computational resources and bandwidth

by minimizing data transfer to higher levels including the root server. Additionally, it enhances scalability by

distributing the workload across multiple levels, enabling the FL procedure to handle a larger number of

clients. Ultimately, incorporating this hierarchy can significantly reduce the training time required for the

generation of the global model.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 44 of 124

AgriDataValue initially proposes a three-level hierarchy depicted in Figure 3. This network topology comprises:

first, a client layer responsible for local model training deployed at the edge; second, a layer of intermediate

servers that will be strategically positioned to communicate with nearby clients, and that aggregates local

models to generate what we will refer as regional models; finally, the central server within the Decentralised

Knowledge Management (DKM) component (refer to Section 6.1 for more details) is in the cloud. This central

server aggregates regional models into a global model. The initial architecture shown in the figure serves as

an example with four clients, two intermediate servers, and a central server. However, it is worth noting that

this architecture may vary based on the available node set and the data source’s location.

Figure 20: AgriDataValue FDML initial hierarchy

Subsequent sections will provide a more detailed description of the sub-components and functionalities of the

FDML component, including a detailed specification of the technologies employed and their development.

4.1.2 Development view

4.1.2.1 Component diagram
Figure 21 shows the component diagram for the FDML, representing its several sub-components and the

several functional blocks. Even if they are not considered components, these functional blocks are crucial to

correctly understand the complete scope of the component. For the sake of simplicity, only one FDML client

and a single intermediate server out of those that conform the whole FDML architecture (schematized in

Figure 20) are depicted. It is important to remark that the internal structure of these sub-components remains

consistent for all the FDML clients and intermediate servers.

To facilitate understanding, sub-components within the FDML are represented with solid lines, functional

blocks with dashed lines, and components outside the FDML are grayed out. Additionally, arrows denote direct

communication or interaction between components, with variations in their design based on the process or

information flow being carried out.

AgriDataValue platform initially considers two distinct flows:

1. Training or fulfillment flow: This process encompasses training and storing models within the

platform. It starts with data acquisition via the Decentralized Data Capture Management toolbox

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 45 of 124

(section 6.1) and concludes with model and metadata storage in the SECURESTORE (Section 5.1). The

FDML’s contribution to this process is represented using solid lines.

2. Inference or delivery flow: In this process, the platform returns advice or prediction to the end user

given a new set of data. This process starts with data acquisition via the Decentralized Data Capture

Management toolbox and culminates in delivering the prediction along with its explainability by the

XAI component. This flow is depicted using dashed lines.

Figure 21: FDML component diagram

It is worth noting that this diagram mainly focuses on the internal connections within FDML and the direct

connections between FDML and other components. The next sections further analyze the components and

functional blocks represented here, and the communication protocol employed.

4.1.2.2 Building blocks
As shown in Figure 21, the FDML component is divided into two sub-components: the FDML client and the

FDML intermediate server, each presenting different functional blocks.

1. FDML clients: The functionality of this sub-component depends on the process being executed. During

the training process, the FDML clients take as input the data from the Decentralized Data Capture

Management toolbox in the specified AgriDataValue format and conduct local AI model training

following the federated scheme described in section 4.1.1. In the inference process, aiming at

maintaining the decentralized structure of AgriDataValue, the FDML clients are responsible for making

predictions. Therefore, given new incoming data, the FDML client sends the prediction made with the

previously generated global model to the XAI component. These FDML clients are deployed on edge

devices, granting access to data from the pilots.

To reach these objectives, the functionality of this component is divided into several blocks:

• Preprocessing module: this module adapts input data to the selected AI model. Considering the

vast heterogeneity of data supported by AgriDataValue, this preprocessing module must handle

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 46 of 124

different data types, including time series, images, or tabular data. Additionally, it computes

several statistics such as the mean or the standard deviation from the training data.

• FDML Trainer: this block conducts DL model training with the preprocessed data and shares the

model weights with the associated intermediate server. Even though the model parameters do

not directly contain training data information, it has been demonstrated that attacks can extract

some insights using generative-based techniques. Hence, upcoming platform versions will explore

privacy-preserving techniques, particularly based on differential privacy, to avoid any data

leakage from the weights. Examples include strategies like PATE (Private Aggregation of Teacher

Ensembles) [6] , secure sum, or differential privacy-based model optimization algorithms such as

DP-SGD [7] [8].

• Registry: This block records trained models and preprocessing conducted.

• FDML predictor: This functional block executes the inference process associated with the selected

model and returns the prediction obtained to the XAI component. In this way, explainability is

included in both the model and the prediction.

2. FDML intermediate server: This sub-component corresponds to the intermediate server in the HFL

strategy described before. Unlike FDML clients, the functionality of these components is confined to

the training process, orchestrating the intra-silo FL with the associated nearby geospatial FDML clients.

Once the intra-silo FL process is completed, the FDML intermediate server sends the regional model

weights to the root server located in the DKM for generating the global model. Finally, when the FDML

intermediate server receives the global model, it forwards the weights to its associated clients.

To fulfil this functionality, the FDML intermediate server comprises two functional blocks:

• FDML control access: This block verifies that the origin of the weights corresponds to a device

associated with the server. In this way, the platform proposed is robust to potential attacks from

unregistered malicious devices.

Aggregator: this block aggregates all benign local models. It is crucial to note that the initially considered

aggregation technique is Federated Averaging (FedAvg) [9], as it is the most used in the state-of-the-art.

However, throughout the project, we will explore the incorporation of other aggregation techniques.

4.1.3 Process view

4.1.3.1 Sequence diagram
Figure 23 and Figure 24 depict the sequence diagram illustrating the functionalities and intercommunication

among the sub-components within the FDML component during both the training and inference processes,

respectively. This section describes these processes in more detail, while subsequent sections describe the

interfaces and data models involved. It is worth noting that all communications operate via the HTTP protocol,

exposing a REST API.

Regarding the training or fulfilment flow, the iterative process of FL can be segmented into the following steps:

1. Model initialization: The DKM (Section 6.1) initiates the learning process of the DL model. Once the

model is defined and initialized, the DKM forwards it throughout the defined network topology for the

learning process.

2. Intra-silo FL: in this iterative process, intermediate servers and FDML clients engage in the regional

model generation process, which consists of the following sub-steps.

a. Local private training: FDML clients access data from the Data Capture Management

component, preferably through an API. However, alternative data access methods will be

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 47 of 124

explored during the project. Then, clients train their local models with their respective data,

assess performance on a validation subset, and save/register the best-performing model.

b. Regional model generation: clients forward local models to their respective intermediate

FDML servers. These intermediate servers validate the origin of the received models and

perform FedAvg aggregation to generate regional models.

c. Regional model evaluation: Regional models are sent to FL clients for storage and evaluation

against their validation data.

3. Global model generation: Upon completion of the intra-silo FL, FDML intermediate servers forward

regional models to the DKM. Finally, following the process described in Section 6.1, the DKM

aggregates these models into the global model.

4. Global model evaluation: Finally, the global model is sent back to clients. This enables clients to make

predictions directly on-device.

Figure 22: Process view of the FDML for the training or fulfilment process

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 48 of 124

Regarding the inference or delivery process, AgriDataValue proposes a decentralized platform where

predictions or advice returned are processed directly at the edge, by the nodes within the platform. This

process is shown in Figure 23 and can be divided into the following steps:

1. Request for advice: The end-user, via the AgriDataValue frontend or a POST request, requests advice

or a prediction from the platform. The request must contain an input dataset in JSON format that will

be used by the platform to make a prediction.

2. Making a prediction: The prediction is received by an FDML client responsible for selecting the model

for inference from its internal registry, preprocessing the input data (through the preprocessing

functional block) and make the prediction (through the FDML predictor functional block).

3. Adding explainability: Upon obtaining the prediction, the FDML client sends the obtained prediction

along with the ID of the used model to the XAI service. Following the process described in Section 4.2,

the XAI service adds necessary explainability to the model and prediction. This enables the end-user

to better understand and interpret the prediction.

It is important to emphasize that in this process, neither the DKM nor the intermediate servers of the

FDML are involved.

Figure 23: FDML - Process view of the FDML for the inference or delivery process

4.1.4 Interfaces

4.1.4.1 Data models used in interfaces
Table 1: Data models used in the FDML

Name FDML Model Interface

Property Type Description

 Weights List of floating-point arrays Serialized model parameters

 N Int Number of samples of the training dataset

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 49 of 124

4.1.4.2 Description of APIs
All the sub-components of the FDML expose a REST API described in the following tables. A wide description

of the functionality associated with these interfaces is available in Annex I.

1. FDML Clients APIs

Table 2: Description of the interfaces of the FDML clients

Title Aggregated model interface
URL: This field holds the relative path to the described API. For simplicity Root path can be cut off from this
description and can be placed as a hypertext above the API template

/rest/downstream

Method This field holds the type of the Method used

POST

URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.

Data Params This field holds the body payload of a post request.

Required:

Weights[array of floats] Parameters of the local model.
Optional:

N[int] Number of samples of the local training dataset
Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>

200 Local model correctly trained
Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.

404 The FDML client is not running

400 Syntax error in the post command

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

 curl --location '0.0.0.0/rest/downstream' \

--header 'Content-Type: application/json' \

--data '{

 "weights":[[0.03,0.21,-0.03]]

}'

2. FDML intermediate servers APIs

Table 3: Description of the interface/rest/downstream of the FDML intermediate server

Title Broadcast global model
URL: This field holds the relative path to the described API. For simplicity Root path can be cut off from this
description and can be placed as a hypertext above the API template

/rest/downstream

Method This field holds the type of the Method used

POST

URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.

Data Params This field holds the body payload of a post request.

Required:

Weights[array of floats] Parameters of the local model.
Optional:

N[int] Number of samples of the local training dataset

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 50 of 124

Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>

200 Global model correctly broadcasted
Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.

404 The FDML intermediate server is not running

400 Syntax error in the post command

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

 curl --location '0.0.0.0/rest/downstream' \

--header 'Content-Type: application/json' \

--data '{

 "weights":[[0.03,0.21,-0.03]]

}'

Table 4: Description of the interface /rest/upstream of the FDML intermediate server

Title Broadcast of regional models
URL: This field holds the relative path to the described API. For simplicity Root path can be cut off from this
description and can be placed as a hypertext above the API template

/rest/upstream

Method This field holds the type of the Method used

POST

URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.

Data Params This field holds the body payload of a post request.

Required:

Weights[array of floats] Parameters of the regional model.
Optional:

N[int] Total number of samples of the regional training
Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>

200 Regional model correctly broadcasted
Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.

404 The FDML intermediate server is not running

400 Syntax error in the post command

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

 curl --location '0.0.0.0/rest/upstream \

--header 'Content-Type: application/json' \

--data '{

 "weights":[[0.03,0.21,-0.03]]

}'

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 51 of 124

4.1.5 Technologies and implementation details
Python 3.11 has been employed for the development and Poetry36 for the installation and management of the

different packages used. Several Python packages, such as Pandas (version 2.0.3) and NumPy (version 1.23.6),

have been utilized for data preprocessing. However, it is essential to highlight the usage of TensorFlow as a

Deep Learning framework and Fleviden as the Federated Learning framework to implement the hierarchical

federated learning.

TensorFlow [10] is an open-source ML framework developed by Google, designed to facilitate the creation,

training, and deployment of ML solutions. This framework enables users to construct and train various ML

algorithms, including neural networks and DL models, while offering flexibility in deploying these models

across different hardware platforms such as CPUs, GPUs, and TPUs.

On the other hand, Fleviden is a fully extensible distributed learning framework developed internally by ATOS’s

Research and Development department. A more extensive description of the framework and more technical

details on the implementation of the FDML components are available in Annex A.

It is important to remark that all the components have been containerized using Docker 37 , and their

deployment has been performed using Docker compose. However, following AgriDataValue guidelines, the

translation of the Docker composes into Kubernetes38manifests is underway for handling the deployment on

AgriDataValue premises. The developments related to this component have been included in the first technical

demonstration of the project, available on the project’s GitLab repository39.

4.2 Human Explainable Conceptual Framework (XAI)

The field of eXplainable Artificial Intelligence (XAI) refers to artificial intelligence (AI) systems that can be

easily understood and interpreted by humans, especially non-expert end-users. The goal of XAI is to bridge the

gap between the complexity of AI algorithms and human understanding, making AI systems more transparent,

accountable, and trustworthy.

In this section the solution provided by AgriDataValue as outcome of the project’s work is presented. In the

following subsections a description of the solution, its components, its main operational processes, and

interfaces is provided.

4.2.1 Description

As part of the AgriDataValue project, which aims to drive digital transformation in agriculture at the
European level, a specialized module is being designed and created to increase the trust and confidence of
end-users in this technological ecosystem that will make massive use of AI.

The Human Explainable Conceptual Framework, i.e. the AgriDataValue solution to explain the decision of AI

models, is designed and being developed with two main goals:

1) to make the process of AI algorithms interpretable and explainable

36 https://python-poetry.org/
37 https://www.docker.com/
38 https://kubernetes.io/
39 https://git.agridatavalue.eu/agridatavalue/demos/demo-fulfillment-flow

https://python-poetry.org/
https://www.docker.com/
https://kubernetes.io/
https://git.agridatavalue.eu/agridatavalue/demos/demo-fulfillment-flow

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 52 of 124

2) to ensure that end-users, be them individual farmers or cooperatives, trust the AI decision

The framework features three main characteristics (i) user–centric design: interpretability methods of AI

models focused on end-users, specifically farmers and farming cooperatives, (ii) Performance Indicators:

qualitative and quantitative metrics to assess the level of interpretation of an XAI explainer (the interpretation

must be as complete as possible, from the data down to the algorithm itself) and (iii) Likert scale as measure

of end-user satisfaction with the provided explanation.

End-users will benefit of the XAI framework by better understanding the mechanisms behind AI predictions

including e.g. crop yield forecasts, disease risks, optimal irrigation schedules etc. As represented in Figure 24,

this virtuous circle tends to increase farmers’ trust in the adoption of advanced AI technologies thus

contributing to the smart-farming objectives towards long-term sustainability.

Figure 24: XAI - Framework envisioned to develop AI systems that are transparent and explainable so that they can be
trusted by non-expert end-users

4.2.2 Development view

4.2.2.1 Component diagram
The XAI component includes the logical flow diagram that displays the logical architecture of the proposed XAI

framework solution at high level, outlining the structure of the internal sub-components and how they interact

within two main operational processes:

a) Fulfillment process: The production of the information content needed to enable the explanations’

delivery.

b) Delivery process: the delivery of explanation content to the end user.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 53 of 124

Figure 25: XAI - Framework logical components interacting to assure XAI functionality.

Both processes are activated by calls to a Service API layer that exposes the services to interfacing components

Fulfilment process:

• Each time a new ML model is trained, the FDML 40 component sends the information needed to create

a new explainer, specifically:

o ml_model_ID: path to model file

o ml_input_dataset: features representation

o ml_prediction_dataset: predicted target representation

o ml_model_context: path to model metadata

• This information is processed by the XAI Builder Service to produce the corresponding explainer

(trained XAI model). At the same time an explainer context is produced, summarizing the explainer

characteristics.

• The explainer is then stored in the SECURESTORE associated to the ml_model ID.

Delivery process:

• Requests to the XAI service may come from both human users through UI (e.g. end-users, developers)

and from programmatic access. The request shall contain reference to the used ML model

(ml_model_ID) and the output, data sample and user context.

• The XAI Service retrieves information about the ml_model context and the matching explainer from

the SECURESTORE component.

• Based on the explainer an explanation is built and returned.

Assumption:

The underlying assumption of this solution is that the XAI framework component and the FDML Component

maintain a shared taxonomy and inventory of ML Models. The ML model is produced in the FDML context, but

40 Along this section 4.2 the inner composition and behaviour of the FDML and the SECURSTORE components is not detailed. For

detailed specifications of these components and their interfaces please refer to sections Error! Reference source not found. and Error!

Reference source not found., respectively.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 54 of 124

needs to be known and accessible to the XAI framework through the SECURESTORE layer (e.g. in H5 and PKL

format, as applicable)

4.2.2.2 Building blocks
As introduced in section 4.2.1 the deployment of the XAI Framework involves three internal building block

sub-components. The XAI Service API, which provides endpoint exposure to the DKM component in the

delivery process and external end-user actors in the delivery process, XAI builder, which processes input

information access from SECURESTORE to map the AI model to the corresponding XAI explainer and keeps it

back in SECURESTORE under the explainer bucket, the XAI service, which retrieves from the SECURESTORE the

explainer and the associated metadata for the end-user who initiated the request through the XAI Service API.

4.2.3 Process view

4.2.3.1 Sequence diagram
The sequence diagram at Figure 26 describe the way the XAI component is integrated in the end-to-end

process of delivering predictions and relevant explanations to an end user.

The XAI component is activated by the FDML component with the step (8). Within the same step it receives

the FDML outcome, i.e. the AI model and its contexts and predictions, needed to explain the decision of the

algorithm. At step #9 XAI explanations contextualized to end-users are produced; they can include feature-

based explanations, example-based explanations, rule-based explanations, and contextual information. The

explanations are then returned to end-user apps/dashboards (step #11).

Preliminarily to this process an internal fulfilment process has took place where the AI models are mapped to

their corresponding explainers and stored in SECURESTORE along with their contexts. This process in internal

to the application and is visible at Figure 25.

Figure 26: XAI - Sequence diagram integrating XAI and FDML

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 55 of 124

4.2.4 Interfaces

4.2.4.1 Data models used in interfaces
Name XAI Data model

Property Type Description

ModelType  Object Configuration model type

ModelReport  Object Information about model

DatasetReport  Object Information about training datasets

OutputServing  Object Output Serving object

ExplainationServing Object Explanation information about local event

UserSatisfaction Object XAI Satisfaction object

4.2.4.2 Description of APIs
(REST)

Title XAI_Fulfilment API
URL: /xai/mapper

Each time a new ML model is trained, the DKM component sends a post request to this endpoint in
order to generate a corresponding explainer which will be stored in minio explainers bucket
Method This field holds the type of the Method used
POST
Data Params This field holds the body payload of a post request.
Required:

model=[str]
Path to the model file in minio, the file should be in
“model.pkl”/ “model.h5”

Required:

metadata=[str]
Path to the model metadata file in minio, the file should
be in “metadata.json” describing the context of AI model

(ml_model_context)
Required:

ml_input_dataset=[str]

The input data used to train the AI model- which will be
used by the XAI explainer the explain how the AI model
reached at this decision

Required:

ml_prediction_dataset: [str]

The predicted target values - which will be used by the XAI
explainer the explain how the AI model reached at this
decision

URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.
Required:

Success response <What should the status code be on success and is there any returned data? This is useful when
people need to know what their callbacks should expect>
200
Content: {"status": "success - explainer and metadata
stored in minio"}

A success message indicating the explainer and its
associated metadata has been stored in minio explainers
bucket

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions of
why the endpoint fails and saves a lot of time during the integration process.
404 response description

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 56 of 124

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please, choose
the format wisely so that is clear and easy to read by the interested parties.
 curl -X 'POST' \
 'http://localhost:8000/xai/trigger/' \
 -H 'accept: application/json' \
 -H 'Content-Type: application/json' \
 -d '{
 "model": "string",
 "metadata": "string",

 "ml_input_dataset ": "string",

 "ml_prediction_dataset": "string"

 }'

Notes This field holds any additional helpful info related to this endpoint.
 In the fulfillment process phase of the XAI framework, all the artifacts of the XAI Builder Services mapping the
AI model to XAI techniques will deposited in SECURE STOR.

Title XAI_Delivery API (being done and will updated)
URL: /xai/explain

Each time the end user gets a prediction from a trained ML model based on his/her own input data
he/she can use this API to get the corresponding explanations on the AI decisions.
Method This field holds the type of the Method
Get
Data Params This field holds the body payload of a post request.
Required:
"model_id": "string" Model_id for used for prediction
Required:

"dataset": "string"
Path to the dataset used to get prediction from the model
with model_id

Required:
"model_output": "dict" The output result of the prediction for specific user-data

a dictionary
URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.
Required:

Optional:

Success response <What should the status code be on success and is there any returned data? This is useful when
people need to know what their callbacks should expect>
200
Content: {"status": "success - explainer and metadata
stored in minio"}

A success message indicating the explainer and its
associated metadata has been stored in minio explainers
bucket

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions of
why the endpoint fails and saves a lot of time during the integration process.
404 response description
Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please, choose
the format wisely so that is clear and easy to read by the interested parties.
 curl -X 'GET' \
 'http://localhost:8000/xai/explain/' \
 -H 'accept: application/json' \
 -H 'Content-Type: application/json' \
 -d '{
 "model_id": "string"

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 57 of 124

 "dataset": "string"
 "model_output": "dict"
}'
Notes This field holds any additional helpful info related to this endpoint.

4.2.5 Technologies and implementation details
The underlying technology for XAI conceptual framework involves various techniques and approaches aimed

at providing insights into how AI models make decisions. In AI, Machine learning (ML) algorithms can be

categorized as white-box or black-box. White-box models, sometimes called glass box models, provide results

that are understandable to experts in the domain. Black-box models, on the other hand, are any AI systems

whose inputs and operations aren’t visible to the user, or another interested party. The goal of the XAI is to

expose black boxes and make them as explainable as a white box. The XAI methods that will be implemented

are characterized along two axes:

• Local and global methods: as the name suggests, these are methods used to explain different aspects

or scope of the AI model behaviour. Local explanations explain single model decisions, while global

explanations characterize the general behaviour of a model (e.g., a neuron, a layer, an entire network).

In some cases, global explanation is derived from local explanations, but this is not necessarily true for

all artificial intelligence models.

• Post-hoc and Ante-hoc Methods: Post-hoc (“after this event”) methods are those methods that

provide the explanation after the model has been trained with a standard training procedure;

examples of such methods are LIME, BETA, LRP. Ante-hoc methods are those that are interpreted

immanently in the system, i.e., they are transparent by nature in the sense that these methods

introduce a new network architecture that produces an explanation as part of its decision.

Figure 27: ADV XAI Framework implementation toolsets along with scope of explanation

The most common toolsets and frameworks for developing XAI systems that will be leveraged in XAI

framework are described in the figure above and include:

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 58 of 124

• LIME: Uses interpretable feature space and local approximation with sparse K-LASSO.

• SHAP: Additive method; uses Shapley values (game theory) unifies Deep LIFT, LRP, LIME.

• Anchors: Model agnostic and rule based, sparse, with interactions.

• Graph LIME: Interpretable model for graph networks from N-hop neighbourhood.

• XGNN: Post-hoc global-level explanations for graph neural networks.

• Shap Flow: Use graph-like dependency structure between variables

Based on each trained ML model type (e.g., Black-box, White-box), its input data (e.g., Tabular, image) and

metadata, corresponding XAI techniques will be mapped, subsequently generating a containerized XAI

explainer, which latter will be called for XAI core service building contexts and delivering explanation for end-

user. Figure 27 summarizes various XAI techniques with their inputs and outputs.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 59 of 124

5 Data Security, Privacy, Traceability & Sharing
Task 2.1 starts the effort of establishing a resilient and trustworthy storage infrastructure within the

AgriDataValue platform. To this end, a comprehensive approach is pursued to accommodate the diverse

nature of data originating from IoT sensors, drones, and Earth Observation hubs. This task extends the storage

functionality by encompassing not only data but also knowledge repositories in the form of Machine Learning

(ML) models and smart contracts. A significant aspect of implementing a trustworthy storage and sharing

system in Task 2.1 lies the incorporation of Blockchain mechanisms into the storage infrastructure. This

integration aims to fortify the security, integrity, and privacy of the stored data and knowledge.

The interoperability of the developed storage infrastructure is one more aspect that is covered by Task 2.1.

Here we ensure compatibility with existing Blockchain technologies, e.g. Ethereum. Additionally, the

integration aspect includes implementing Gaia-X compliant gateways and IDS connectors, facilitating seamless

interaction with external data sources. Lastly, to uphold principles of privacy by design, Task 2.1 explores

advanced cryptographic mechanisms such as Attribute-Based Encryption (ABE), including CP-ABE and KP-ABE,

alongside innovative signature schemes. This combination aims to guarantee data confidentiality and, where

applicable, enforce time expiration.

The partners involved in developing the Data Security, Privacy, Traceability & Sharing component of the

AgriDataValue platform will place particular emphasis on compliance with data protection regulations, with a

focus on GDPR, and incorporate ethical considerations to maintain the latest standards of data privacy and

security. By achieving these milestones, in Task 2.1 we will contribute significantly to the overarching goal of

establishing a secure and interoperable data storage solution within the AgriDataValue platform.

5.1 Trustworthy Data and ML models storage and sharing

(SECURESTORE)

5.1.1 Description
The SECURESTORE component serves as a trustworthy storage element within the AgriDataValue ecosystem,

designed to provide a secure and organized storage solution. At its core is the integration of Minio storage,

featuring various buckets tailored for multiple data types and sources. This structure facilitates the storage of

data, ML models, and corresponding explanations, allowing efficient retrieval and management.

Within SECURESTORE, data originating from diverse sources like IoT sensors, drones, and Earth Observation

(EO) hubs converted to follow the ADV data model will be classified and stored in designated buckets based

on their type and source, ensuring a streamlined repository. In addition to data, SECURESTORE dedicates

specific buckets for the storage of ML models. This approach will encompass not only the models themselves

but also their associated metadata. Furthermore, SECURESTORE incorporates buckets for storing explanations

linked to the stored ML models. These explanations, enriched with metadata, will contribute to an enhanced

understanding of the rationale behind model predictions.

Integral to the seamless functioning of SECURESTORE is its interaction with the DKM component. The DKM

component takes on the responsibility of partly populating SECURESTORE by inserting ML models, metadata,

and explanations. This symbiotic relationship ensures a continuous and harmonious flow of information. The

other component involved in populating SECURESTORE, is the STORE component, where the raw data coming

from the pilots will be initially stored and aggregated before being moved for long term trustworthy storage

in SECURESTORE. One of the main novelties in the ADV platform is that SECURESTORE goes beyond

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 60 of 124

conventional storage paradigms by integrating with blockchain technology. Smart contracts will be triggered

post-insertion events by the SECURESTORE component. These contracts, executed on the blockchain, imprint

essential information such as hash values and URLs, creating an immutable and transparent ledger of data, ML

models, and associated explanations.

In terms of implementation, SECURESTORE involves the configuration of the Minio storage system inside a

dockerised container, the creation of interfaces for DKM and STORE interaction, developing smart contracts

for blockchain integration, and establishing of robust data flow management mechanisms. Security measures

are also put in place, including encryption, access controls, and monitoring to safeguard the integrity and

confidentiality of stored information.

The SECURESTORE component, through its organization, interaction with the DKM component, and

integration with blockchain, realizes a secure, transparent, and interoperable storage solution within the ADV

ecosystem.

5.1.2 Development view

5.1.2.1 Component diagram

Figure 28. Logica view diagram for SECURESTORE

5.1.2.2 Building blocks
The SECURESTORE component of ADV contains the following sub-modules:

1. The actual storage system based on MinIO;

2. The CHAINTRACK component;

3. The Blockchain component storing smart contracts.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 61 of 124

5.1.3 Process view

5.1.3.1 Sequence diagram

Figure 29. Sequence diagram for SECURESTORE

In the operational workflow of SECURESTORE (Figure 29), a periodic script is activated to monitor updates in

the STORE data. Upon detecting changes, the script orchestrates the copying of new data to designated Minio

buckets within SECURESTORE storage. Simultaneously, the DKM component contributes to this process by

inserting FDML, XAI models, and their corresponding metadata to the SECURESTORE minion storage specific

buckets, encapsulating the functional and explanatory aspects of the models. Within SECURESTORE, a

cyclically running script takes charge of triggering a smart contract on the CHAINTRACK blockchain. The

invoked smart contract, upon execution, performs the registration of new data and model insertions to the

CHAINTRACK blockchain. This engagement with the blockchain ecosystem establishes a concrete link between

the newly introduced data and models and their corresponding URLs, which are recorded on the CHAINTRACK

blockchain for future reference.

5.1.4 Interfaces

5.1.4.1 Data models used in interfaces

Name AIM data model
Property Type Description

 Sensor, drone and EO

data

 All data inserted to SECURESTORE will

follow the AIM model as formatted in the

STORE component

Name FDML data model
Property Type Description

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 62 of 124

 FDML model data and

associated metadata

FDML models and associated metadata to

be inserted in the specific MinIO buckets

Name XAI data model
Property Type Description

XAI model data and

associated metadata

 XAI models and associated metadata to be

inserted in the specific MinIO buckets

5.1.4.2 Description of APIs
In the current implementation of the deployed SECURESTORE component access control will be done based

only on credentials, in the following iterations there will be a Keycloack integration with the minIO storage.

(REST)

Title This field holds the description of the API
URL: This field holds the relative path to the described API. For simplicity Root path can be cut off from this
description and can be placed as a hypertext above the API template

/minio-server:9000
Method This field holds the type of the Method used
GET | POST | DELETE | PUT
Data Params This field holds the body payload of a get/ post request.
Required:
endPoint =[alphanumeric] minio server url
accessKey=[alphanumeric] Credentials to access minio storage

secretKey=[alphanumeric] Credentials to access minio storage

Optional:
bucketname=[alphanumeric] minio bucket to be accessed
Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>
200 OK

204 No content

Content: { }

Both codes indicate success. In the case of a
successful upload an empty response will be
returned.

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.
4xx (client errors)

5xx (server errors)

minio specific: “NoSuchKey”

standard http error responses

or minio specific error in xml format

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

 curl -X GET \

 -H "Authorization: AWS ACCESS_KEY:SECRET_KEY" \

 http://your-minio-endpoint:9000/your-bucket-name

Notes This field holds any additional helpful info related to this endpoint.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 63 of 124

5.1.5 Technologies and implementation details
The current stage of the SECURESTORE component has implemented a containerized Minio storage in a Docker.

The implementation of Dockerised Minio Storage within SECURESTORE involved the use of containerization

technology to encapsulate the Minio storage system, providing a lightweight, scalable, and portable solution.

Some implementation details include:

• Docker is employed to containerize the Minio storage system. Containers encapsulate Minio and its

dependencies, ensuring consistent and reproducible deployment across various environments.

• A Minio Docker image sourced from the official Minio Docker image available on Docker Hub. This

image includes the Minio server and provides a baseline for container instantiation.

• Configuration settings for Minio, such as access keys, secret keys, and storage parameters, are

managed using environment variables. This allows for easy customization without modifying the

underlying Docker image.

• Persistent storage is achieved using Docker volumes mounted to the Minio container, ensuring that

data persists even if the container is stopped or removed.

5.2 DLT-based supply chain tracking solution (CHAINTRACK)

5.2.1 Description
Ensuring the safety, quality, and authenticity of food products heavily relies on the traceability of the food
supply chain. As consumers become increasingly concerned about the origin and sustainability of the products
they consume, the need for innovative technological solutions to address these challenges becomes evident.
Blockchain technology emerges as a promising solution to enhance the traceability of agri-food supply chains,
offering significant advantages from both functional and technical perspectives.

Blockchain serves as an immutable and shared record of all transactions and events occurring along the agri-
food supply chain. This characteristic empowers consumers with access to comprehensive information about
the entire production process, from planting to distribution, ensuring transparency and verifiability of
information. Moreover, the blockchain enables a permanent record of information pertaining to the
provenance and authenticity of food products, rendering it impossible to counterfeit or falsify products. But
a Blockchain-based solution also enhances food safety, as rapid detection of problems or contamination of
food products becomes possible due to the accurate traceability provided by the technology, which protects
consumers from potential health risks.

A Blockchain solution then simplifies the monitoring of activities along the supply chain, enabling supply chain
actors to identify any inefficiencies or delays early and make corrections proactively, leading to greater
efficiency and reduced waste.

Blockchain uses advanced cryptography and a distributed structure to make data immutable and safe from
tampering. This ensures that traceability information is reliable and accurately stored.

The decentralized nature of the Blockchain allows information to be shared among all authorized participants
in the agribusiness supply chain and all actors in the supply chain to be identified. Moreover, the Blockchain-
based solution simplifies process management, reducing the need for manual checks and paperwork resulting
in faster and more accurate operations.

Blockchain technology can be adapted to meet the needs of agrifood supply chains of different sizes and
complexity. In addition, interoperability between different Blockchain and information systems allows for
greater collaboration between different actors within the supply chain.

The CHAINTRACK component provides the service of tracking of supply chains of various agricultural products.

It is a development based on Ethereum and Hyperledger Besu technologies.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 64 of 124

5.2.2 Development view

5.2.2.1 Component diagram
The CHAINTRACK component includes a REST API that interfaces the Blockchain Network and the Store

component. Information about a particular supply chain is registered in the SECURESTORE and bound with an

account on the blockchain network.

Figure 30: Logical view diagram – CHAINTRACK

Supply chain process data coming from workflow management is saved on the blockchain network in a hashed

format. Actual data is saved in the SECURESTORE41 associated with the relevant hash. Retrieval of process

information from the UI/APP is directed to SECURESTORE; information and the corresponding hashed version

are returned. The transaction data can on-demand be verified against the blockchain, by comparing the hash

with the one returned from the blockchain.

5.2.2.2 Building blocks
The Figure 31 below describes the deployment architecture of the CHAINTRACK module highlighting the

communication flows in place between two available technical interfaces. Besides the REST API, that provides

a comfortable integration channel for web-based clients, it is also possible for an external actor to interact

directly with the blockchain network.

41 Along this section 5.2 the inner composition, implementation, and behaviour of the SECURSTORE component is not discussed. The

SECURESTORE is intended as a persistence service layer accessible to the CHAINTRACK application, sometimes alternatively referred

to as “the database”. For detailed specifications of the SECURESTORE component and its interfaces please refer to section Error!

Reference source not found..

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 65 of 124

Figure 31: CHAINTRACK deployment architecture.

The secure storage is achieved through the combined action of two sub-components: an object store for the

actual conservation of the data (SECURESTORE component) and a blockchain network to certify in a non-

disputable and immutable way the relevant steps of the data lifecycle.

5.2.3 Process view
The application process put in place for tracking supply chain information is strongly dependent on the supply

chain use case. In general, the information entities to record, track, and certify production and distribution

steps differ according to the specificity of the production/supply chain being tracked. The particularity of the

supply chain impacts the definition of the data model in the storage component and, as a side-effect, the

structure of the REST APIs methods input/output data. It is possible, for very standardized productive

processes, to make an attempt of generalizing such model, at least at the level of market sector and product

type but, unless the process is very well regulated at administrative level (e.g. the DOCG certification process

for a selected production chain), it is expected that particular producers and consortia had developed their

own production/distribution processes, targeting specific and differentiating business plans and KPIs.

Therefore, the need to instantiate specific developments in terms of building a supply-chain-dependant

database schemas and REST interfaces must be taken into account when approaching such a development.

The overall set-up process is well represented in Figure 32, Outlining how to commission a DLT-based supply

-chain tracker into service. Specialized configuration actions need to be done by the tracker’s owner normally

translating into the need to develop a dedicated database schema and corresponding set of APIs.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 66 of 124

Figure 32:Development usually needed to configure the supply chain to track.

At this level the interaction between the supply chain process and the AgriDataValue platform of platform can
be appreciated in terms of general services. At the time of this document’s authoring, no specific low- level
requirements addressing supply chain operations have been defined, hence, it is not yet possible to give a full
definition of the REST interfaces now of the data model, for the aforesaid reasons.

Nevertheless, to allow a deeper understanding of the interactions and the actual capabilities of the solution
in a real-life scenario, the decision was made to implement a specific example as a “reference” supply-chain
use-case. This realization, while constituting a synthetic example and therefore passible of variations or future
reconsiderations, is expected however be useful to serve for the first infrastructural end-to-end validation test
cases.
The example, dealing with the traceability of an olive oil production chain accomplished via the utilisation of

a Blockchain solution, is a process that involves several actors along the entire supply chain, from production

to distribution of the final product. The various phases of this process are detailed in the next paragraphs by a

UML representation of the relevant steps.

5.2.3.1 Step 1: Collection

The flow begins with production and, therefore, with the collection of information about the place of origin
of the raw “material” (olives):

▪ Origin
▪ the place of production (geolocation)
▪ the methods of cultivation or extraction
▪ varieties
▪ quantity

Table 5: CHAINTRACK for Olive Oil: “Collection” technical steps

What happens in the background

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 67 of 124

The information about the supply chain is written in the database for reference. No information is written
on the blockchain. A supplyChainID is generated to bind info and later to retrieve it

5.2.3.2 Step 2: Delivery to the mills

Subsequently, the delivery of the olives to the mill takes place, in this phase the data involved are:
▪ Company
▪ Date of operation
▪ Incoming quantity
▪ Unit of measure
▪ Supplier
▪ Delivery slip

Table 6: CHAINTRACK for Olive Oil: “Delivery” technical steps

What happens in the background

The information about the supply chain is written in the database. The blockchain stores the hashed
information.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 68 of 124

5.2.3.3 Step 3: Milling
The flow continues with the milling (processing), the data concerned are:

▪ Company
▪ Date of operation
▪ Quantity of oil produced (in litres)
▪ Oil category
▪ Certification number
▪ Type of certification

Table 7:CHAINTRACK for Olive Oil: “Milling” technical steps

What happens in the background

The information about the supply chain is written in the database. The blockchain stores the
hashed information.

5.2.3.4 Step 4: Packaging

Then packaging takes place with labelling via QR Code or NFC, the data collected are:

▪ Company
▪ Date of operation
▪ Packaged quantity
▪ Unit of measurement lt,hl
▪ Bottles, Cans or Ampoules
▪ Container capacity
▪ Packaging lot number

Table 8: CHAINTRACK for Olive Oil: “Packaging” technical steps

What happens in the background

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 69 of 124

The information about the supply chain is written in the database. The blockchain stores the hashed
information. The label of the finished product contains a reference to the supplyChainID (QR Code or NFC)

5.2.3.5 Step 5: Certification
Immediately afterwards, the certification phase takes place and the data concerned are as follows:

▪ Company
▪ Date of operation
▪ Company checked: unique identifier of the farm
▪ Date of start of marketing
▪ End date of marketing
▪ Control date

Table 9: CHAINTRACK for Olive Oil: “Certification” technical steps

What happens in the background

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 70 of 124

The information about the supply chain is written in the database. The blockchain stores the hashed
information.

5.2.3.6 Step 6: Distribution
Finally, there are two more steps:

▪ distribution (at the point of sale and the final consumer);
▪ other relevant information regarding the quality and sustainability of the product.

All this information is organized step by step into blocks of data (this is specific information, such as a batch of
oil produced on a specific date or at a specific location):

▪ Each block in the Blockchain solution receives a unique identifier called a "hash", which uniquely
represents the information contained, and serves as a fingerprint to ensure the integrity and
authenticity of the data.

▪ Next, the blocks containing the oil information are validated and verified by the Blockchain network
nodes, which can be operated by different participants in the supply chain, such as producers,
suppliers, transporters, and distributors.

▪ Once validated, each block is added to the chain, creating a sequential and chronologically ordered
record of all steps in the oil production and distribution process.

▪ By the time the oil reaches the final consumer, the consumer can access the oil's traceability
information using the code or tag on the product label. The consumer can easily verify the authenticity
of the oil, know its origin, and assess the sustainability of the production practices adopted.

Table 10: CHAINTRACK for Olive Oil: “Distribution” technical steps

What happens in the background

The user checks the info about the supply chain via UI or app providing the supplyChainID as input (QR Code or
NFC taken from the product label). The whole supply chain data is retrieved from the database and returned. Each
step can be object of further verification by querying the relevant transaction on the blockchain via dedicated APIs
calls (not shown in the diagram).

5.2.4 Interfaces

The Interfaces activated in the process described above are here specified from a technical point of view.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 71 of 124

It should be noted that both the model and the interfaces contain input/output elements not strictly defined,

since a general model/interface featuring all the possible processes has not been developed yet.

Simultaneously, the provided tables put the accent on relevant parameters that every product/process owner

is expected to provide, before the next analysis/development phases are initiated.

A specific interface definition corresponding to the “reference” Olive Oil Supply chain tracking use cases will

be provided as part of the component validation kit.

5.2.4.1 Data models used in interfaces

Name CHAINTRACK Data model

Property Type Description

Property Type Description

message string Generic message

messageObject object Message Response from server

response object Success message from server

notFoundResponse object Not found message from server

unauthorizedMessage object Unauthorized message from server

loginWeb object Payload for login

supplyChain object Payload representing a supply chain

operation object Payload representing an operation in the supply chain

updateOperation object Payload representing an update for a specific operation
in the supply chain

findShapeFileBody object Payload for a request to search a POI related to an actor
in the supply chain

signedOperation object Payload to add a new operation in the supply chain

signedSupplyChain object Payload to add a new supply chain in the application

deleteSupplyChainBody object Payload to delete a supply chain

accountETH string Ethereum account who isf performing the API operation

operationList object List of operations inside a supply chain

actorEnrollment object Payload to finalize the enrolment of a user

actorEnrollmentPending object Payload to start the enrolment of a user

certifiedOnBlockchainBody object Payload to certify supply chain’s operations to blockchain

addMultimediaBody object Payload to add multimedia resource related to a
company in the supply chain

findMultimediaBody object Payload to search multimedia resources related to a
company in the supply chain

multimediaElement object Payload representing a multimedia resource related to a
company in the supply chain

addSupplyChainBody object Payload to create a new supply chain

addSupplyChainDraftBody object Payload to create a new supply chain in draft status

addOperationBody object Payload to save a new operation for a supply chain

addOperationDraftBody object Payload to save a new operation in draft status for a
supply chain

detailOperationBody object Payload to get details for a specific operation in a supply
chain

addRemoveActorBody object Payload to add/remove an actor in a supply chain

getOperationListBody object Payload to get the list of operations in a supply chain

deleteOperationInDraftBody object Payload to delete draft operation in a supply chain

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 72 of 124

5.2.4.2 Description of APIs

Title Retrieves the dynamic template to customize the dashboard
URL: /getTemplate

Method
POST
Data Params
Required:
accountETH=[string] Ethereum account calling the service
Success response
200
Content: { }

The template to be used in the front-end dashboard

Error response
401
Content: {"message": "string"}

Not authorized

404
Content: “message-string”

Not found

500
Content: “message-string”

Internal server error

501
Content: {"message": "string"}

Request not managed by the system

Sample
curl --location --request POST 'http://localhost:3000/getTemplate' \
--header 'Content-Type: application/json' \
--header 'Accept: */*' \
--header 'authorization: {{apiKey}}' \
--data-raw '{
 "accountETH": "aliqua aute"
}'

Notes

Title Returns the companies and the employees associated with it,
if any

URL: /companies/{accountETH}

Method
GET
URL Params
Required:
accountETH=[string] The Ethereum address of the user performing the operation

Optional:
cuaa=[string] The cuaa of the company itself or the one of the related CA
commodity_code=[string] The commodity code related to the accounts of the company to

search

Success response
200
Content: { }

The company with its employees

Error response
401
Content: {"message": "string"}

Not authorized

406
Content: “message-string”

Account cannot enrol employees

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 73 of 124

500
Content: “message-string”

Internal server error

Sample
curl --location --request GET 'http://localhost:3000/companies/non?cuaa=non&commodity_code =non' \
--header 'Accept: */*' \
--header 'authorization: {{apiKey}}'

Notes

5.2.5 Technologies and implementation details
The technologies that will be used for the blockchain are Ethereum and Hyperledger Besu, while for the

Storage, MinIO and Python are expected to be used as parts of the SECURESTORE component.

Component Storage Type

Blockchain Network NFS Server

API-Rest (SECURESTORE)

For the API-Rest component the NodeJS and Express framework have been used to expose the API. It will use

the SECURE STORE as the persistence layer. For the blockchain an NFS Server has been used to store the

persistent files related to the peers that compose the network.

5.3 Access Control System (ACS)

5.3.1 Description
The Access Control System (ACS) tool offers access rights and a dependable authentication system. Among the

features that the ACS tool supports are Authentication, Authorization, and Accounting (AAA) services. The

purpose of the ACS tool is to authenticate users or components trying to access AgriDataValue resources. After

that, it ensures that they can only use AgriDataValue resources for which the required authorizations have

been specifically given.

The ACS tool has embraced the following technologies: SAML 2.0, OpenID Connect, and OAuth 2.0.

OAuth 2.0 authorization framework [11] allows a user to grant a third-party website or application access to

their protected resources without having to reveal their identity or login credentials. OAuth divides the

responsibilities of the resource owner and client and offers an authorization layer. The client also requests

access to resources that are hosted by the resource server and managed by the resource owner. The resource

owner then provides the client with an alternate set of credentials. An access token, which is a string with

specified scope, lifetime, and other access attributes indicated, is sent to the client. Access tokens are issued

to third-party clients by an authorization server with resource owner consent. Next, the client uses the access

token to gain access to the secured resources.

OpenID Connect (OIDC) [12] is an identity layer Developed on top of the OAuth 2.0 framework. It makes it

possible for third-party apps to get basic user profile data and confirm the end user's identity. OIDC uses JSON

web tokens (JWTs), which users can acquire through flows that follow OAuth 2.0 guidelines. OIDC is concerned

with user authentication, whereas OAuth 2.0 deals with resource access and sharing. Its goal is to provide

users with a single login to use on several websites. A user is redirected to the relevant OpenID site where

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 74 of 124

they are currently logged in whenever they need to use OIDC to log into a website. They are then taken to the

website after that.

SAML 2.0 standard (Security Assertion Markup Language) [13] offers online business partners an XML-based

framework for exchanging and describing security-related data. Applications that operate across security

domain boundaries can trust the security information expressed in these portable SAML assertions. To

generate, request, communicate, and use these SAML assertions, specific guidelines are outlined in the OASIS

SAML standard. These portable SAML assertions express security information that can be trusted by

applications operating across security domain boundaries. The OASIS SAML standard specifies precise

guidelines that must be followed in order to create, request, communicate, and use these SAML assertions.

The AgriDataValue ACS tool is available at https://auth.platform.agridatavalue.eu/, it provides single sign-on

functionality and is based on Keycloak (Keycloak, n.d.), which is supported by RedHat and provides an identity

and access management solution for multiple applications and services. A connection between the

AgriDataValue components and the ACS tool is intended and will be used for inter-component

communications.

5.3.2 Development view

5.3.2.1 Component diagram

Figure 33: ACS - Component diagram

The diagram in Figure 33 depicts the positioning and the dependencies of the ACS component in relation to

the rest of the platform’s components. As described earlier it serves as an auth(z) service for the platform’s

components.

5.3.2.2 Building blocks
There are no internal building blocks of the ACS component.

5.3.3 Process view

5.3.3.1 Sequence diagram
Figure 34 depicts the process of a component requesting access to another component’s resource from a high-

level point of view. The authentication and authorisation process are managed through the ACS component

which facilitates the access among components in the ADV platform and their access permissions.

https://auth.platform.agridatavalue.eu/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 75 of 124

Figure 34: ACS - Sequence diagram

5.3.4 Interfaces

5.3.4.1 Data models used in interfaces
The ACS component does not use the ADV data model as it is based on Keycloak which is an external tool.

Therefore, the ACS will use Keycloak’s data model and interface as described in the documentation available

online42.

5.3.4.2 Description of APIs
The ACS API is merely Keycloak’s API as described in Keycloak’s online documentation.

5.3.5 Technologies and implementation details
As mentioned above, Keycloak has been used as the technology under the hood of the ACS component.

In the following screenshots the stages of the ACS service for granting access for the authorized user to the

AgriDataValue resources are demonstrated.

42 https://www.keycloak.org/documentation

https://www.keycloak.org/documentation

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 76 of 124

Figure 35: ADV ACS - Keycloak main page

Figure 36: ADV ACS - Realm page

5.4 International Data Spaces (IDS) component(s)

5.4.1 Description
In the landscape of data sharing and interoperability, the International Data Spaces (IDS) framework emerges

as a comprehensive solution, fostering secure and trustful relationships among diverse entities. The IDS

Connector, key component within this framework, serves as a gateway for seamless data transactions,

ensuring the integrity, confidentiality, and interoperability of information exchanged among participants. The

IDS Connector Core Service embodies a spectrum of functionalities, from Authentication and Data Exchange

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 77 of 124

to Remote Attestation and Contract Management. Each component plays a crucial role in upholding the

principles outlined in the IDS Reference Architecture Model (IDS RAM)43, delineating the intricate web of

interactions essential for reliable and secure data spaces. Furthermore, the internal sub-components/modules

of the IDS Connector, such as the IDS Connector and Dataspace Protocol, provide a fair understanding of the

technological implementations and protocols governing data spaces. With a diverse array of connectors and

protocol options, including open-source solutions the IDS framework stands at the forefront of shaping a

robust and flexible infrastructure that transcends technical specifications, encompassing organizational, legal,

and trust-based considerations for secure and sovereign data exchange.

5.4.2 Development view

5.4.2.1 Component diagram

Figure 37: Visual description of a Data Space and IDS Components

43 https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/

https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 78 of 124

Figure 38: Functionalities of the IDS Connector Core Service(s)

Figure 38 above illustrates the distinct functionalities of the IDS Connector Core Service(s) through a UML

deployment diagram, representing each function as a separate component. While the diagram purposefully

outlines the components' external interfaces, it omits the internal ones due to their variability across different

implementations. Additionally, to maintain clarity, not all component interactions are depicted.

Below is a description of each functionality:

• Authentication Service: Manages information essential for authenticating the IDS Connector with

other backend systems or authorizing access between the IDS Connector and other IDS participants.

It recommends a strict division of internal and external access credentials for security purposes. This

service offers interfaces for both configuration and incorporation of custom authentication services.

It maintains the Key/Trust Store for IDS Protocols, credentials for Data Management and Data

Exchange with external systems, and access control information for IDS-related Data Exchange and

Data Management. This arrangement is indicated by a solid line within the IDS Connector.

• Data Exchange: This component has interfaces essential for data sharing with other IDS Participants,

capable of being hosted on different infrastructures from the IDS Protocol(s) component. It allows for

multiple instances to accommodate various protocol bindings and does not handle IDS-specific

interfaces or interpret the IDS Information Model.

• IDS Protocol(s): Facilitates at least one IDS-specific interface, as prescribed in IDS-G, to execute

processes detailed in Section 3.4 of IDS Reference Architecture Model (IDS RAM). All components

engage with the IDS Protocol component, depicted by dashed lines.

• Remote Attestation: Enhances trust among various components, verifying the integrity of software

on other participants' systems (detailed in Section 4.1 of IDS RAM).

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 79 of 124

• (Audit) Logging Service: Logs comprehensive information during component operation, including

system changes, errors, data access, and policy actions. It can forward data to systems responsible for

auditable logging and provides or necessitates an interface to these systems.

• Monitoring Service: Monitors component status to verify conditions such as active operation, error

presence, or offline status of the IDS Connector.

• Data App Management: Manages the downloading, deployment, and integration of IDS Apps within

the IDS Connector.

• Policy Engine: Consolidates all elements enforcing IDS Usage Control Policies, including various points

like PAP, PEP, PIP, PXP, PMP, and PDP.

• Contract Management: Oversees contract negotiations between Participants and archives the IDS

Contract Agreements. Though it is an aspect of Metadata Management, its significance to Usage

Control in IDS necessitates its distinction as a separate component.

• Metadata Management: Stores metadata of utilized or shared data assets, primarily governed by the

IDS Information Model, but possibly supplemented with other details. It links contracts from the

Contract Management component with data from the Data Management component.

• Data Management: Contains the data assets or references to data sources, destinations, or IDS Apps,

enabling dynamic data retrieval or transmission.

• Configuration Management: Houses configuration parameters applicable to IDS Protocols and

general components.

• User Management: Administers user authentication across all component interfaces, potentially

utilizing external Identity Services or its own resources. It includes a configurable interface.

IDS Connectors vary in their technological implementations, each tailored to specific functional requirements.

These connectors are classified by their certification level as stated in Section 4.2 of IDS RAM, signifying their

adherence to certain security and data sovereignty standards.

5.4.2.2 Building blocks

5.4.2.2.1 IDS Connector

An IDS Connector is a component within the International Data Spaces (IDS) framework, facilitating data

transactions among various entities. This component provides a gateway for data retrieval, preservation, and

manipulation through Data Endpoints. Whether situated on-site or in cloud infrastructures, IDS Connectors

employ container management technologies for applications, guaranteeing a secure, segregated space for IDS

Apps and inherent Connector operations. Their implementation can vary, manifesting as Developer

Connectors, Mobile Connectors, or Embedded Connectors, contingent on the operational context. The IDS

Connector's primary roles include forging trustful relations, safeguarding data transfers, and endorsing

uniform interoperability within the IDS network. Currently there are multiple implementations of IDS

Connector (26 connectors, as of November 2023), that are listed in detail in the Data Connector Report 44 that

is published (and updated on a monthly basis) by International Data Spaces Association. Among these

connectors two options are being considered by the consortium. These are 1) Eclipse Dataspace Components45

and 2) DataSpaceConnector46 which are both available as open source.

44 https://internationaldataspaces.org/data-connector-report/
45 https://github.com/eclipse-edc
46 https://github.com/International-Data-Spaces-Association/DataspaceConnector

https://internationaldataspaces.org/data-connector-report/
https://github.com/eclipse-edc
https://github.com/International-Data-Spaces-Association/DataspaceConnector

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 80 of 124

5.4.2.2.2 Dataspace Protocol

The Dataspace Protocol 47serves as a critical framework in the realm of data spaces, specifically designed to

ensure technical interoperability among various participants. This comprehensive system mandates that any

entity wishing to partake in a data space must adhere to the protocols outlined within this specification. The

scope of these protocols extends beyond mere technical interoperability, encompassing aspects of semantic

understanding, trustworthiness, organizational dynamics, and legal frameworks.

The protocol mainly functions as the tool to ensure:

• Contextual Framework for Interoperability: The protocol operates within data spaces, promoting a

high degree of interoperability. While it lays the groundwork for technical communication and data

exchange, it also encourages participants to engage in semantic interoperability, ensuring that data

semantics are universally understood and consistent.

• Multi-Level Interoperability: Interoperability isn't just about systems working together. It's about

building trust, establishing common organizational practices, and navigating the legal landscape.

These elements are crucial for cross data space communication, which, while not covered in this

document, are handled within the data spaces' organizational and legal structures.

• Role of Connectors: Participants interact through agents known as "Connectors." These are

sophisticated entities that handle the protocols and enable data exchange, ensuring that interactions

are seamless, secure, and adhere to the established guidelines. They may also interface with other

systems as necessary, providing a versatile communication nexus within the data space.

• Identity Management and Trust Framework: A pivotal element within this ecosystem is the Identity

Provider, tasked with authenticating participant agents and validating their claims. This mechanism

can adapt to the unique structures of different data spaces, whether they're centralized,

decentralized, or federated, underpinning the trust framework essential for secure and reliable

interactions.

• Beyond Technical Specifications: Connectors may possess additional internal functionalities (e.g.,

monitoring, policy enforcement engines) that, while outside the purview of this specification, play a

role in the broader operational context. Similarly, the protocol doesn't dictate the specifics of the data

being transferred (like structure, syntax, or semantics), leaving that to the discretion of participant

agreements, thereby ensuring flexibility and context-specific relevance.

In brief, the Dataspace Protocol is a foundational infrastructure that supports a multifaceted interoperability

landscape, addressing not only the technical aspects but also the organizational, legal, and trust-based facets

critical for robust, secure, and effective data spaces.

47 https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/readme

https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/readme

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 81 of 124

5.4.3 Process view

Figure 39: Separation of Control Plane and Data Plane in Dataspace Protocol (v0.8)

Figure 39 depicts the separation of Control plane and the Data plane in the Dataspace Protocol.

5.4.3.1 Sequence diagram

Figure 40. ADV platform functional view (source: deliverable D1.3)

In the current status of the ADV project, the implementation of IDS connectors within the ADV platform has

not yet been realized. As seen in Figure 40, the IDS connectors are expected to interact with the majority of

the ADV platform, meaning that the deployment of IDS connectors is contingent upon the completion and

integration of all participating components within the ADV ecosystem. Consequently, the sequential process,

accompanying diagrams, and detailed implementation specifics are not yet unavailable for description, but

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 82 of 124

will be included in the following iterations of the deliverables describing the technical implementations of the

ADV platform.

5.4.4 Interfaces
The Interfaces, including the Data models and the APIs have not been defined yet. Details will be available in

the next version of the deliverable.

5.4.4.1 Data models used in interfaces
N/A at the moment.

5.4.4.2 Description of APIs
N/A at the moment.

5.4.5 Technologies and implementation details
Implementation details are not available at the moment. Details will be available in the next version of the

deliverable.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 83 of 124

6 AI-Based Cloud Platform

6.1 Decentralised Knowledge Management (DKM)

6.1.1 Description
The main objective of the Decentralised Knowledge Management (DKM) component is twofold. On the one

hand, it orchestrates the process of training and storing AI models in a federated manner, establishing

communication among the FDML (see Section 4.1), the XAI (see Section 4.2), and the SECURESTORE (see

Section 5.1) components. On the other hand, the DKM itself is responsible for generating the global AI model

by aggregating the local or regional models from FDML, along with the associated metadata.

To achieve this, the DKM acts as the root server of the HFL topology described in Section 6.1. The basic

functionality of this root server is to aggregate the local/regional model weights obtained and generate the

metadata associated with the resulting global model. However, a fundamental aspect of the AgriDataValue

platform is privacy and security, which, logically, must extend to the process of generating AI. For this reason,

the FL performed in collaboration between the FDML and the DKM components, must include strategies to

avoid data leakage and to strengthen the learning process against malicious attacks. Two solutions are

proposed within the DKM for this purpose: an agent authentication process and poisoning attack detection.

Figure 41: DKM security in the learning process

Regarding the authentication process, also called control access, the DKM verifies that the received weights

originate from the address of one of the FDML agents (whether intermediate server or client) directly

associated with the central server in the HFL topology. This process prevents unauthorized devices from

participating in the FL process, thereby safeguarding the integrity of the final global model generated during

the aggregation. This is the case of the third client in Figure 41 example.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 84 of 124

On the other hand, a poisoning attack [14] refers to the malicious submission of corrupt model weights by a

FL client. These corrupt weights significantly degrade the performance of the final global model. To address

these attacks, the DKM in collaboration with the FL-AgriDataGen (section 6.3), proposes the combination of

generative DL methods and anomaly detection algorithms to detect and discard poisonous weights for the

aggregation. This process is based on the offline generation of synthetic databases that simulate real

agronomical data by the FL-AgriDataGen component. Then, these synthetic databases are employed by the

DKM to detect anomalous weights received from the clients and discard them. This is the case of Client 4 in

Figure 41.

Finally, the aggregation is performed using the FedAvg technique. This technique is widely used in the FL state-

of-the-art, proposing the direct aggregation of the model weights by the computation of their weighted

average. However, throughout the technical development of the project, other alternatives may be

investigated to potentially enhance the platform’s final performance.

For the sake of simplicity, as can be seen in Figure 41 and Figure 42Figure 44, all the functionality of the DKM

has been divided into three functional modules. These modules, their interactions, and their development are

described in more detail in the subsequent sections.

6.1.2 Development view

6.1.2.1 Component diagram
Figure 7 depicts the component diagram for the DKM, illustrating its several sub-components and functional

blocks. In a similar way to FDML, functional blocks are represented with dashed lines, sub-components with

solid lines, and components outside the DKM are represented in gray.

It is important to note that, to align with the decentralized strategy proposed by the AgriDataValue platform,

this component is exclusively engaged in the fulfillment flow. Hence, all the arrows between components

represent interactions established during the process of learning and storing AI models tailored for different

use cases.

Figure 42: Logical diagram for the DKM component

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 85 of 124

6.1.2.2 Building blocks
As can be seen in the previous illustration, the DKM component directly interacts with the main components

dedicated to the training and storage process of AI models, namely: the FDML component, the SECURESTORE,

the XAI module, and finally the FL-AgriDataGen. As it was mentioned before, the functionality of DKM can be

viewed as an extension of the traditional functionality of a root server in a HFL scheme. For the sake of clarity,

this functionality has been divided into three functional blocks:

1. Authentication module or control access: This module receives the parameters/weights from local or

regional models originating from the different FDML agents. Upon receiving these parameters, this

module undergoes an authentication process where the origin address of the weights is verified. In

those cases where the origin address is unknown, their respective weights are discarded from future

analyses.

2. Anomaly detection: This module performs the anomaly detection process to detect and avoid

poisoning attacks. To do this, this module evaluates the performance of the local models with

synthetic data generated by the FL-AgriDataGen. Those models whose performance is below a specific

threshold are excluded from the final aggregation process.

3. Aggregator: This functional block performs the aggregation process to conform to the global model

and generates the metadata associated with the generated model. The employed aggregation

technique is the FedAvg. Following this technique, the global model weights in a specific round of the

hierarchical federated learning (𝑤𝑡
𝐺) are calculated as the weighted average of the weights of the

FDML agents connected to it (𝑤𝑡
𝑘). The final equation is as follows:

𝑤𝑡
𝐺 ← ∑

𝑛𝑘

𝑛
𝑤𝑡

𝑘

𝐾

where 𝑛𝑘 is the number of samples used for training local model of FDML client 𝑘. Additionally, this

module generates the metadata associated with the global model. These metadata are going to be

stored alongside the model in SECURESTORE. The next table contains a description of the final

generated metadata. In addition to these metadata, the storage of information related to statistics of

the training dataset will be studied.

Table 11: DKM - Metadata generated for each global model

Field Format Description Example

Model ID Unique id
Unique Id of the model. This ID is directly

generated from the number of models available
in the database.

1

Version Integer Version of the model 0

Date Date Date when the model has been generated “15/12/2023”

Model type String
Type of AI model trained. Initially AgriDataValue
will focus on DL models such as DNNs, CNNs or

RNNs among others.

“DNN”

Dependencies
List of
strings

List of dependencies for running the model.
[“Tensorflow=2.14”,

“numpy=1.26”]

Input features
List of
strings

Name of the input features of the model.
[“Temperature”,

“humidity”]

Feature types
List of
strings

Data types required for the input variables.
[“float”, “float”]

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 86 of 124

6.1.3 Process view

6.1.3.1 Sequence diagram
The following diagram depicts the interaction of the DKM with the other components during the process of

training and storing AI models. It is important to note that, for simplicity, the sub-components of FDML

(namely FDML clients and FDML intermediate servers) have been grouped in this diagram under the FDML

component. For more detailed information regarding the data flow among these sub-components, readers

are referred to Section 4.1.

As seen in Figure 43, the sequence diagram can be divided into the following stages:

1. Training launch: The initialization of the training process is directly performed by the end-user of the

platform through AgriDataValue’s front-end or via a POST request to the DKM service. Subsequently,

DKM starts operating as the root server of the HFL process described in Section 4.1.

2. Model initialization: The DKM initializes the AI model and sends the initial model weights to the FDML.

3. Global model generation: Following the training process of the different local and regional models,

the three functional modules are executed. Firstly, the authentication or control access of the FDML

agents is performed. Then, the evaluation of the received model using the synthetic databases

generated by the FL-AgriDataGen takes place through the anomaly detection module. Finally, the

aggregation and the generation of the metadata is performed by the aggregator module.

4. Global model evaluation: The global model is forwarded to the FDML clients for on-device evaluation

of the model with their local data.

5. Global model storage: Once the model has been aggregated, the DKM triggers the storage of the

model in a pickle format along with metadata in JSON format.

6. XAI trigger: Following the model storage in the SECURESTORE, the DKM sends the associated model

metadata to the XAI module. The XAI component, through its builder service, loads the previously

stored model in SECURESTORE and trains an XAI explainer, which is also stored in SECURESTORE.

Output
features

List of
strings

Name of the output features of the model.
[“Pressure”]

Output types
List of
strings

Data types of the output variables.
[“int”]

Preproc String
Type of pre-processing performed. Some

examples are: “min-max norm”, “max norm” or
“z-score”.

“max norm”

Data type String
Type of the training data. Some examples are:

“Tabular”, “Timeseries” or “images”
“Tabular”

Use case /
Domain

String
Domain for which the data can be used. It may

match the uses cases defined in ADV.
“Fertilization”

ADV Pilot Int
ADV pilot number in which the data has been

extracted.
8

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 87 of 124

Figure 43: Sequence diagram for the DKM

6.1.4 Interfaces

6.1.4.1 Data models used in interfaces
Name DKM Data model
Property Type Description

 Weights Array of floats
 Weights / parameters of the
model trained

 Metadata JSON / Dict
 Metadata (described in the
table X) defined in a JSON
format.

6.1.4.2 Description of APIs
(REST)

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 88 of 124

6.1.4.3
Title Training Launch
URL: This field holds the relative path to the described API. For simplicity Root path can be cut off from this
description and can be placed as a hypertext above the API template
/rest/train
Method This field holds the type of the Method used
POST
Data Params This field holds the body payload of a post request.
Optional:

Advusecase[str] Domain for which the data can be used. It may
match the uses cases defined in ADV.

Advpilot [int]
ADV pilot number in which the data has been
extracted.

Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>
200 The global model has been trained successfully
Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.
404 The DKM is not running
400 Syntax error in the post command

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.
 curl --location '0.0.0.0/rest/train' \

--header 'Content-Type: application/json' \

--data '{

 "advusecase":"Fertilization",

 "advpilot":8

}'

Title Model Aggregation
URL: This field holds the relative path to the described API. For simplicity Root path can be cut off from this
description and can be placed as a hypertext above the API template

/rest/upstream
Method This field holds the type of the Method used
POST
Data Params This field holds the body payload of a post request.
Required:
Weights[array of floats] Parameters of the local model.
Optional:

Metadata [json] Metadata specified in the format specified in table Y

Success response
200 Local models correctly aggregated
Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.
404 The DKM is not running
400 Syntax error in the post command

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

curl --location '0.0.0.0/rest/train' \

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 89 of 124

--header 'Content-Type: application/json' \

--data '{

 "weights":[[0.03,0.21,-0.03]],

 "metadata": {

 "modelID":1,

 "version":0,

 "date":"15/12/2023",

 "modeltype":"DNN",

 "dependencies": "[“Tensorflow=2.14”, “numpy=1.26”]",

 "inputfeatures": "[“Temperature”, “humidity”]",

 "featuretypes":"[“float“,“float“]",

 "outputfeatures":"[“Pressure“]",

 "outputtypes":"[“float“]",

 "preproc":"max norm",

 "datatype":"Tabular",

 "advusecase":"Fertilization",

 "advpilot":8

 }

}'

6.1.5 Technologies and implementation details
The technology used for the implementation and deployment of the DKM is similar to the one described in

Section 4.1.4 for the FDML. However, neither TensorFlow nor Pandas have been involved in the development

as the DKM does not require training AI models or preprocessing data.

Annex A presents a detailed description of the development of the DKM with the Fleviden framework. This

development has been Dockerized and deployed with the FDML with Docker Compose. The developments

related to this component have been included in the first technical demonstration of the project, available on

the project’s GitLab repository48. It is important to remark that in the actual version of the component, the

integration with the FL-AgriDataGen for the anomaly detection has not been performed yet.

6.2 Storage (STORE)

6.2.1 Description
The STORE component will address the needs for storing non-sensitive and non-private data generated from

the rest of the components of the ADV platform. As of now, it is not yet clear the exact data that will be stored

in this component. Nevertheless, the STORE component is planned to support several types of data storage

needs, e.g. stream data, metadata, sensor data, etc. More thorough description of the component is planned

for the next version of the deliverable.

6.2.2 Development view

6.2.2.1 Component diagram
The logical view of the STORE component is depicted in Figure 44. The component will expose a data

management API which will handle all incoming data requests, supporting several communication protocols

(e.g., HTTPS, TCP, MQTT), routing the data to the appropriate internal data store. Aiming to address the

48 https://git.agridatavalue.eu/agridatavalue/demos/demo-fulfillment-flow

https://git.agridatavalue.eu/agridatavalue/demos/demo-fulfillment-flow

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 90 of 124

storage needs for several data types, it is planned to include a range of internal stores, i.e., SQL store, NoSQL

store, in-memory store, etc. The data management layer will also handle any communication needed with the

SECURESTORE. Of course, the needs of the data will modify the final sub-modules of the component.

Figure 44: STORE - Component diagram

6.2.2.2 Building blocks
The building blocks of the component are the Data Management layer and the stores. However, these are not

defined yet, hence, they will be described in the updated version of this deliverable.

6.2.3 Process view

6.2.3.1 Sequence diagram
The sequence diagram in Figure 45 shows the high-level steps for storing incoming data from the data sources

to the internal stores of the STORE component, and the subsequent forwarding of (a part of) them to other

components of the ADV platform (such as the SECURESTORE component).

Figure 45: STORE - Sequence diagram

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 91 of 124

6.2.4 Interfaces
The Interfaces of the STORE component, including the data model and the API description of the Data

management layer submodule are not yet defined; they will be described in the updated version of this

deliverable.

6.2.4.1 Data models used in interfaces
The data model will follow the ADV data model specification which will be based on the AIM data model.

6.2.4.2 Description of APIs
The API of the STORE component is not defined yet.

6.2.5 Technologies and implementation details
As briefly mentioned, the STORE component will address the needs for several types of data. Therefore, it will

leverage technologies that are able to handle this heterogeneity. As of now, the technologies that have been

identified and are planned to be used are the following:

1. Postgres DB49 including PostGIS50 for the SQL DB store.

2. MongoDB51 for the NoSQL DB store.

3. Redis52 for the in-memory store.

4. Python + Django53 for the Data Management layer API.

Additional technology and implementation details will be included in the next version of this deliverable.

6.3 FL-AgriDataGen (DATAGEN)

FL-AgriDataGen, short for Agri-environmental data generator, is a component that aims to the generation of

synthetic labeled data samples, following ADV’s systematic analysis. The component is going to leverage

Generative Adversarial Networks (GANs), a state-of-the-art generative method. The purpose of the generated

datasets will be two-fold: on the one hand, they will be employed as attack datasets to assist the evaluation

and validation of the FDML anomaly detection algorithms. On the other hand, the datasets generated by the

FL-AgriDataGen component will be employed for training purposes as and when needed, e.g. in the context of

the XAI component. In the following paragraphs, an extensive description of the component and the employed

technologies is presented.

6.3.1 Description
FL-AgriDataGen is going to utilise GANs for the generation of synthetic ADV datasets, to be used for both the

evaluation of the FDML anomaly detection algorithms and, possibly, for the training of other components (e.g.

XAI).

GANs have emerged as a powerful and innovative approach in the realm of dataset generation. Introduced by

Ian Goodfellow and his colleagues in 2014 [15], GANs consist of two neural networks, a generator, and a

discriminator, engaged in a competitive learning process. The generator creates synthetic data instances,

attempting to mimic a given dataset, while the discriminator evaluates the authenticity of these generated

49 https://www.postgresql.org/
50 https://postgis.net/
51 https://www.mongodb.com/
52 https://redis.io/
53 https://www.djangoproject.com/

https://www.postgresql.org/
https://postgis.net/
https://www.mongodb.com/
https://redis.io/
https://www.djangoproject.com/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 92 of 124

samples in comparison to real ones. Through iterative training, the generator improves its ability to produce

increasingly realistic data, while the discriminator refines its capacity to differentiate between real and

synthetic instances. GANs have found applications in various domains, ranging from computer vision to natural

language processing, enabling the generation of diverse and high-quality datasets for training machine

learning models.

Our component will exploit the capabilities of GANs to generate synthetic data, which can subsequently be

employed for tasks such as data augmentation, attack generation, and fortifying defense mechanisms. We

construct a versatile GAN model capable of handling both image and tabular data, producing realistic samples

aligned with the distribution of a given training set. To enhance accessibility, we encapsulate our model within

an API, facilitating seamless integration with larger components for training, testing, or making inferences

through endpoints. Additionally, we package our GAN model as a Docker container, thus streamlining

deployment and installation procedures across diverse locations. Currently, we have launched the

development of an image GAN tailored to olive tree images. As soon as pilots’ historical data become available,

the GAN model is going to be expanded to incorporate additional model and dataset options (e.g. tabular), in

order to support the multi-modal data source approach of ADV, i.e. data collected via the IOTD, EOD and DRD

components.

6.3.2 Development view

6.3.2.1 Component diagram
In this paragraph, the sub-components of FL-AgriDataGen and their intercommunication and operational flow
are presented. Two similar data flows are implemented in the context of the component. In any case, the end-
user (or component) must provide the training dataset, based on ADV’s real data. Subsequently, the training,
inference or other procedures are triggered either manually or via the available API.

The input dataset is processed in an appropriate manner by the DATAGEN pre-processor component, to be
later fed as input to the GAN model. The GAN model processes the input dataset to generate the ADV synthetic
data, as needed according to type of input dataset. The output of the GAN model passes on to the ADV Data
Model Translator to be translated in the defined ADV data model format. The results generated by the GAN
model, and translated to the ADV data model are then retrievable via the API, thus providing a streamlined
and responsive interaction between external components and the underlying model. The generated ADV
synthetic dataset will then be given as input to the FDML component for the validation of the developed
anomaly detection algorithms. Additionally, the generated synthetic data will also be provided for training
purposes to other ADV components (e.g. XAI), if / when needed.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 93 of 124

Figure 46: FL-AgriDataGen component diagram

6.3.2.2 Building blocks

6.3.2.2.1 DATAGEN Pre-processor

The DATAGEN pre-processor is the sub-component that is responsible for the pre-processing of the ADV real

data that are given as input to the FL-AgriDataGen. Appropriate preprocessing procedures are followed in the

case of both image and tabular input data.

As far as the input images are concerned, initially, they are resized to fit the input size of the GAN model.

Resizing is an essential preprocessing step that adjusts the dimensions of an image to a desired size, facilitating

consistent input dimensions for machine learning models and computational efficiency. Properly resized

images ensure that the model receives uniform input sizes, which is crucial for achieving consistent

performance and accurate predictions across diverse datasets.

The next step is normalization which is a crucial preprocessing step that scales pixel values to a consistent

range, typically between 0 and 1, ensuring uniform brightness and contrast across images. By standardizing

the intensity levels, normalization aids in reducing the variability in image data, making it more suitable for

machine learning algorithms that are sensitive to input feature scales. This process helps in improving the

convergence speed and overall performance of models trained on the normalized image data. We should

underline that an appropriate normalization is also applied in the case of tabular data.

6.3.2.2.2 GAN Model

The GAN Model component comprises a collection of functions responsible for initializing and interacting with

a GAN model. These functions are invoked by the API in response to specific HTTP requests, or manually via

an appropriate command given via the command-line. Among these functions is a training function that

initializes and trains a GAN model using the provided dataset. Additionally, there is an inference function that

loads the model and generates appropriate outputs, along with various utility functions that contribute to the

GAN training or inference processes. The overall approach follows the common practice in neural networks

with respect to training, testing, and validation.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 94 of 124

The model architecture employed for the image generation is a GAN. This model operates on a unique

principle of competition between two neural networks: the generator and the discriminator. The generator is

tasked with creating synthetic data from random noise inputs. Concurrently, the discriminator's role is to

distinguish between these generated images and real ones from a dataset. As training progresses, the

generator refines its output to produce images or tabular data that become increasingly indistinguishable from

real ones, while the discriminator becomes more adept at making accurate distinctions. This adversarial

process results in the generation of highly realistic data, with the interplay between the two networks driving

improvements in both data quality and the generator's ability to produce authentic-looking content.

6.3.2.2.3 ADV Data Model Translator

The ADV Data Model Translator (DMT) is going to be responsible for the translation of the synthetic data to

an ADV representation of them. This component will be based on the ADV data model translation library that

will be created in the context of IOTD toolbox. The output of this sub-component will be a generated synthetic

dataset that will be represented in the exact manner ADV’s real data are represented.

6.3.2.2.4 AgriDataGen extractor and API

The AgriDataGen extractor and API component serves as a gateway for handling incoming requests seeking

interaction with the GAN model through its designated endpoints, as well as an extractor and package

manager for the datasets that are requested for generation. To be precise, the API exposes three endpoints

catering to both training and inference functionalities. The training endpoint necessitates no parameters but

mandates users to mount the input dataset to a specific location of the running container. Subsequently, the

model undergoes training via this request, employing the adversarial GAN training process, and the generated

synthetic datasets are then stored for future utilization, after their translation to the ADV Data model. On the

other hand, the inference endpoint requires a size parameter, specifying the desired quantity of generated

samples (e.g. images). Leveraging the previously trained model, this endpoint invokes the model to produce

the requested number of data samples.

6.3.3 Process view

6.3.3.1 Sequence diagram
The sequence diagram is composed of two sequences, i.e. the training and inference sequence. The training

sequence begins with an external ADV component issuing a training request to the AgriDataGen Extractor and

API component, for it to be forwarded to the DATAGEN pre-processor component, for the appropriate pre-

processing of the given dataset to be conducted. The pre-processed dataset is then given as input to the GAN

model, and the actual training procedure follows. Upon completion, the training status is provided to the

AgriDataGen Extractor and API, to be later accessed by the component which originally requested the training.

The inference sequence begins with an inference request by an external ADV component. Of course, the

training should have been completed before the inference. The number of data samples to be generated is a

required parameter of this step. The GAN model proceeds to the generation of the synthetic dataset, which is

then translated by the ADV Data Model Translator. The ADV synthetic data are then provided to the requesting

entity to be utilised as / when needed.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 95 of 124

Figure 47: FL-AgriDataGen sequence diagram

6.3.4 Interfaces

6.3.4.1 Data models used in interfaces
FL-AgriDataGen will adopt the ADV data model. The synthetic data generated in this component will be

translated before their extraction and provision to other ADV components. As the ADV Data model is not

considered stable in its current version, the data model mappings will not be included in the present

document. However, we should notice that the approach for the FL-AgriDataGen component will be, for the

most part, identical to the approach adopted in the context of IOTD component.

6.3.4.2 Description of APIs
An initial version of the API provided by the FL-AgriDataGen component is recorded here. In this initial version,

the API includes only three endpoints, two for training purposes and another one for inference. As the

development of FL-AgriDataGen proceeds, additional essential endpoints will be created accordingly. We

should also notice that in case of training, the input datasets must be provided in a specified format which will

be finalised soon, thus it is not recorded in the present deliverable.

Title Training
URL

/api/v1/training/
Method
POST
URL Params
N/A
Request Body
{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 96 of 124

 "dataset_path": {

 "type": "string",

 "description": "The path of the training dataset.",

 },

 "dataset_type": {

 "type": "string",

 "description": "The dataset type",

 "enum": ["image", "tabular"]

 }

 },

 "required": [

 "dataset_path",

 "dataset_type"

]

}

Headers

Authorization Bearer <Token>

Accept application/json

Success response
202

{
 "$schema": "http://json-

schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "description": "The ID of the

training.",

 }

 },

 "required": [

 "id"

]

}

Accepted training request

Error response
400 Bad Request
401 Unauthorized

403 Forbidden

500 Internal Server Error

Title Training Status
URL

/api/v1/training/{training_id}/status/
Method
GET
URL Params
training_id=[integer] The ID of the training to request the status for.

Request Body

N/A

Headers

Authorization Bearer <Token>

Accept application/json

Success response

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 97 of 124

200

{
 "$schema": "http://json-

schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

 "status": {

 "type": "string",

 "description": "The status of

the training procedure.",

 "enum": ["failed", "pending",

"running", "completed"]

 }

 },

 "required": [

 "status"

]

}

OK

Error response
401 Unauthorized
403 Forbidden

404 Not found

500 Internal Server Error

Title Inference
URL

/api/v1/inference/
Method
POST
URL Params
N/A
Request Body
{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

 "training_id": {

 "type": "integer",

 "description": "The ID of a completed training procedure."

 },

 "size": {

 "type": "integer",

 "description": "The number of data samples to generate. "

 }

 },

 "required": [

 "training_id",

 "size"

]

}

Headers

Authorization Bearer <Token>

Accept application/json

Success response
202 Accepted inference request

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 98 of 124

{
 "$schema": "http://json-

schema.org/draft-04/schema#",

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "description": "The ID of the

inference.",

 },

 "dataset_path": {

 "type": "string",

 "description": "The path of

the generated dataset.",

 }

 },

 "required": [

 "id",

 "dataset_path"

]

}
Error response
400 Bad Request

401 Unauthorized
403 Forbidden

404 Training ID not found

500 Internal Server Error

6.3.5 Technologies and implementation details
The Model sub-component has been developed using Python, employing common libraries such as NumPy54

for efficient computational operations. PyTorch55 and Torchvision56 were chosen as the framework for creating

the model and conducting pre-processing steps. The API, responsible for handling interactions with the model,

is built utilising Flask57.

To ensure portability and ease of deployment, the system is containerized using Docker58. This encapsulation

facilitates consistent performance across different environments and simplifies the overall deployment

procedures.

54 https://numpy.org/
55 https://pytorch.org/
56 https://pytorch.org/vision/stable/index.html
57 https://flask.palletsprojects.com/en/3.0.x/
58 https://www.docker.com/

https://numpy.org/
https://pytorch.org/
https://pytorch.org/vision/stable/index.html
https://flask.palletsprojects.com/en/3.0.x/
https://www.docker.com/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 99 of 124

7 Infrastructure and tools
AgriDataValue employs the DevSecOps methodology for development, integration, testing, and deployment.

This section outlines and discusses the integration framework and tools that AgriDataValue used to build the

project's CI/CD pipeline.

AgriDataValue adopts DevSecOps practices to support the platform's integration efforts and the management

of the upcoming AgriDataValue platform releases. DevSecOps is, to put it simply, the expansion of DevOps

security enhancements. DevOps with is a set of practices that combines software development and

information technology (IT) operations. It is designed to be used in conjunction with Agile software

development. Its ultimate objective is to accelerate the systems development life cycle while consistently

delivering high-quality software. Because DevSecOps provides security by design, infrastructure security is

integrated from the beginning into DevOps.

The phases of the AgriDataValue DevSecOps approach, given best practices, consist of:

• Arrange and produce. Procedures that have a direct bearing on the methods used in software design

and development.

• Check, wrap, and distribute. These phases have a direct bearing on automated CI/CD tools, particularly

GitLab, which handle continuous integration and delivery.

• Set up, identify, react, anticipate, and modify. These phases primarily relate to production-level quality

assurance testing and the procedures involved in relaying the results back to the design and

development phases in a continuous, looping exchange.

Figure 48: AgriDataValue DevSecOps

DevSecOps, or Development, Security, and Operations, is the process of automating the integration of security

at every stage of the software development lifecycle, from initial design to integration, testing, deployment,

and software delivery. It implies that security is an essential part of agile DevOps approaches and

methodologies, such as continuous delivery, continuous integration, and cooperation.

7.1 CI/CD pipeline

Continuous Integration (CI) is a development methodology that uses a lot of automated tests, the appropriate

tools to support automation, and incremental changes to maintain a working system through frequent (often

daily) mainline integration. This makes it possible for teams to work together on shared code, which enhances

system quality and development visibility. Continuous Integration (CI) is a development methodology that

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 100 of 124

typically calls for the application of Test-Driven Development (TDD) in conjunction with continuous

refactoring. When a developer drives and unit-tests their local copy of the code, they ensure that it operates

consistently.

Continuous deployment, or CD, is the process of automatically introducing new system releases into the live

environment. When a system reaches a maturity level (as indicated by specific, predefined criteria), CD takes

care of automatically updating an already-running version of the system to minimize downtime after the

above-described continuous integration process.

When combined, CI and CD form a pipeline that takes in new developments and outputs an updated,

functional system that is hosted in a predefined environment. In AgriDataValue, a CI/CD environment with

GitLab has already been established. Figure 49 displays the high-level CI/CD pipeline of GitLab.

Figure 49: CI/CD pipeline – Source: about.gitlab.com.

The following figure provides a more detailed illustration of the suggested CI/CD pipeline.

Figure 50: CI/CD pipeline steps - Source: docs.gitlab.

Figure 50 illustrates the primary steps of GitLab's CI/CD process in more detail This process can be explained

as follows.

• When integrating a particular piece of software, the software developer aims to integrate it with a

module's functionality.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 101 of 124

• Unit-tests are presented by the developer for the relevant code segment, evaluating the output

consistency of the module.

• Using a remote GitLab repository branch that the CI infrastructure has designated as a development

branch, the developer pushes and commits changes to the code in their local repository.

• The developer has asked for code merging.

• The chosen unit test or tests are executed by the CI platform, and the project-specific CI/CD pipeline

is turned on.

• If unit-testing is successful, additional integrated system testing is applied to the code.

• The recently committed source code will be incorporated into the code’s master branch upon approval

of the merge request, provided that the integrated system testing is successful.

• If not, the request will be denied. In this case, the developer must either update the code to follow

the protocols or update the unit testing itself.

• The newly written code is now running on the deployment infrastructure and undergoing user testing

and production following a successful CD, which is the process of building and deploying the software

package via the source code management platform.

Figure 51: Development lifecycle (from source code to Kubernetes)

7.2 Tools in AgriDataValue

Within the context of AgriDataValue's integrated framework, the project's private infrastructure and toolbox

have been set up and configured to support project operations, such as code sharing and development,

testing, issue reporting, and user documentation. The sections below provide descriptions of the tools and

infrastructure that have been used in AgriDataValue thus far.

7.2.1 Software management tool
It has been determined to store project developments and use source code management and version control

through a private Gitlab deployment in AgriDataValue. The selection of GitLab (self-managed) was influenced

by the following factors:

1. It is a Git-based open-source code management system.

2. Multiple projects, each with a unique set of groups and subgroups, may be created. This makes it

possible to arrange components and source code in accordance with additional guidelines provided

by the partners or with the architectural blocks that they are a part of.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 102 of 124

3. Private actions can be taken during the early stages of software development while more stable

versions are released as open source, as multiple private projects can be started.

4. The branching, developing, testing, and reviewing features of GitLab enable development teams to

complete tasks in parallel before combining them.

5. Pipelines for automated deployment and integration procedures are provided by GitLab. Sequential

continuous delivery (CD) and continuous integration (CI) operations are described by pipelines.

6. The ability to designate a project as private or public allows for the possible public release of source

code and individual components.

7. Container images uploaded to Gitlab's private Container Registry can be used by the Kubernetes

deployment.

As a result, the project's private GitLab instance, which requires admin permission and registration to access,

is presently hosting the project developments.

Figure 52: Overview of AgriDataValue group in ADV’s self-hosted GitLab instance

7.2.1.1 Source code management
Tracking modifications to the source code is the primary objective of version control systems (VCS), also known

as source code management (SCM). SCM is considered to be a crucial phase in the creation of software.

Branching and merging, traceability, and the entire long-term change history of every file are the key features

of this kind of system. Programmers, developers, and testers can make sure they are always working with

accurate, up-to-date code, and avoid conflicts when combining code from different sources by maintaining a

running history of changes made to a codebase. Git is a distributed software that is free and open-source, and

it is the most widely used VCS tool. The AgriDataValue consortium uses GitLab, an open-source Git

management tool, to manage Git repositories.

7.2.1.2 Issue tracking
An issue tracking system is a piece of software that makes it easier for members of a working group to create,

manage, and discuss issues from the point of origin to the point of resolution. "Issues" in software can include

any kind of software bug, desired new feature, unexpected behaviour, enhancement, or request for software

to be updated, changed, added, or even for application functionality. Project planning is made easier by a

number of features that the Issue Tracking System offers in addition to general issue management and

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 103 of 124

tracking. These consist of the capacity to allocate resources, establish deadlines, prioritize tasks, interact with

other members of the team, send email alerts, and more.

Throughout the project, the AgriDataValue consortium will utilize the issue tracking tools offered by the GitLab

web platform. There is a dedicated issue tracker for the AgriDataValue Integrated Platform. Issues, bugs, and

suggestions for new features can be reported by AgriDataValue Integrated Platform users (developers, other

stakeholders, and end users). The AgriDataValue team looks over these reports and takes the best possible

action. The figures below show the issue tracker created for testing in two different views: the Board view,

which displays all issues, and the List view, which displays the five "buckets" (referred to as lists in GitLab

terminology): "Backlog," "ToDo," "InProgress," "UnderReview," and "Done." It is available and it remains at

the disposal of the component owners and the end-users for use.

Figure 53: Snapshot of ADV’s group issues in GitLab

7.2.1.3 Containerisation tools
Operating system (OS)-level virtualization, which is used to distribute and execute distributed applications, is

known as containerization. Containerization, a lightweight alternative to virtual machines, entails enclosing an

application within a container that has its own operating system. Code and library application-layer

dependencies are packaged, and containerization builds an abstraction layer on top of it. Because they

virtualize the operating system rather than the hardware, containers are dependable and portable in a variety

of computing environments. Moreover, multiple containers can use the same OS kernel. Containerized

software is compatible with both Windows and Linux applications and operates in an identical manner

regardless of the infrastructure. With the aid of containers, software can be isolated from its surroundings and

guarantee dependable operation even in the event of variations, such as between development and staging

environments.

Docker is the most widely used application of containerization technology. An executable software package

that is small and standalone is called a Docker container image. Code, runtime, system libraries, system tools,

and settings are all contained in it. The most popular automated platform for container deployment, scaling,

and management that is compatible with Docker containers is Kubernetes (K8s), an open-source system for

automating the deployment, scaling, and management of containerized applications.

The technical developers of the project will put their completed technical outcomes into Docker containers

and upload them to a registry repository that has the image changes. The AgriDataValue GitLab container

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 104 of 124

registry, accessible at https://registry.git.agridatavalue.eu , is utilized by the AgriDataValue project. The figure

below shows a snapshot of this repository.

Figure 54: Snapshot of ADV’s container registry

7.2.2 Message bus
As the technical partners discussed how to integrate the various components and exchange information, it

became clear that a message bus was necessary. This tool would serve as a message broker for event messages

sent between components. These messages may also be meant to function as alerts or event notifications, as

opposed to being data messages.

The AgriDataValue message bus is provided by Apache Kafka, which can also be used with pub/sub paradigm

data streams. It has been adjusted, configured, deployed, and tested under WP2 and Task 2.4 guidelines. It

can be accessed by AgriDataValue components. Apache Kafka is a high-performance (low latency and high

throughput) distributed streaming platform for managing real-time data. Large volumes of data can be

handled and ingested into processing pipelines for batch and real-time applications with ease.

The main characteristics and functions of the platform are as follows: a) High fault-tolerance - Resistance to

node failures and support of automatic recovery, b) Elasticity - High scalability, c) Distributed messaging

system, d) Interoperability with all popular data sources and modern data storage technologies, e) Security

(authentication, authorization, and encryption).

AgriDataValue’s message bus is not visible to the public and is used to serve components that are either part

of the same private network or the same Kubernetes deployment; Kafka can be used in already included in

the deployment. Annex I contains a description of the Kafka messages' data schema.

https://registry.git.agridatavalue.eu/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 105 of 124

7.3 Infrastructure

Because of the nature of AgriDataValue developments and the sensitivity of the data that may be involved in

the overall project integration and component evolution (e.g. regarding model training), two dedicated

physical servers have been used to host the integration platform. The technical specifications of the two

physical servers are summarized in Table 12 and Table 13.

Table 12: Integration server overview: DELL PowerEdge R540

Manufacturer DELL

Model PowerEdge R540

No CPUs 1

CPU Type Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz

No Cores 10

No Logical Threads 20

RAM 96GB

Disk 3.2TB, RAID-5

Table 13: Integration server overview: DELL PowerEdge R210II

Manufacturer DELL

Model PowerEdge R210II

No CPUs 1

CPU Type Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz

No Cores 4

No Logical Threads 8

RAM 16GB

Disk 1TB, RAID-1

The PowerEdge R540 server functions as an integration server, hosting the AgriDataValue components and

enabling their operation, while the PowerEdge R210II is mainly utilized for supporting services, such as hosting

the project's Gitlab instance and the runners that go along with it. There is only one configured Gitlab runner

at the moment, but more can be added as needed for the project's parallel builds.

In addition to an intrusion detection system (Suricata instance), a reverse proxy and reverse DNS server

(HAProxy instance), and a pfSense firewall, the two servers previously mentioned are protected by the

HAProxy service, which exposes all of the services provided by the AgriDataValue integration platform and

also handles TLS termination (SSL offloading) for HTTP(s) calls made against the AgriDataValue component

services.

7.4 Documentation

Wiki pages, word documents, and readme files have been made to help AgriDataValue technical partners

integrate their components with the AgriDataValue tools (Keycloak, Kafka). Developers and integrators are the

intended audience for this internal documentation, which also includes usage examples and details on the

various tools, policies, and deployment procedures. Figure 55 shows an example of the contents of the

Guidelines on GitLab and Figure 56 an example of a README file. In addition to integration/technical

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 106 of 124

information, wiki pages could be developed with the goal of instructing end users on how to use and

administer tools and components. Both tool administrators (such as Keycloak) and will find use for this

information as documentation. This documentation is currently in progress.

Figure 55: Documentation – Guidelines

Figure 56: Documentation - Kubernetes example

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 107 of 124

8 Component verification and validation
The purpose of the Verification and Validation plan is to guarantee that AgriDataValue components are

successfully integrated and operate as intended during the project's design phase. It outlines the procedure

that AgriDataValue components must adhere to in order to undergo appropriate testing, and then describes

the procedure that records and verifies their functional and non-functional performance both independently

and as a component of a larger system (pilot).

8.1 Verification plan

The Verification Plan outlines the steps AgriDataValue implementations must take in order to:

• confirm that each application provides the functionality that each AgriDataValue integrated platform

component was intended to provide during the design phase;

• confirm that the integration between each AgriDataValue integrated platform component has been

successfully completed.

A series of Test Levels that can be applied on them help to realize this. In short, the goal of these tests is to

confirm that every component:

• Can successfully integrate with the relevant AgriDataValue platform's components;

• Offers the necessary functionality for which it was designed;

• creates a system that satisfies the specified KPIs.

Test Levels are part of the verification plan, and they each cover a distinct aspect of the verification procedure.

These are explained in the sections that follow.

The following test levels can be described in accordance with the Agile Test Extension of the International

Software Testing Qualifications Board (ISTQB):

Component testing is often called unit, module, or program testing, and it looks for errors in software

modules, programs, objects, classes, etc. that can be tested separately and verifies their functionality. It can

be completely separately from the rest of the system, depending on the context of the development life cycle

and the system itself. Differential component tests related to the development of the AgriDataValue

integrated platform will be designed and implemented in each technical work package that supplies

AgriDataValue components. Unit-test verification at the component level will be facilitated by these tests.

Integration testing evaluates the degree of interoperability between components and the degree of

interoperability between systems. Systematic integration strategies can be built on top of system architecture

(e.g., top-down and bottom-up), functional tasks, transaction processing sequences, or other aspects of the

system or its components. Generally, integration should be incremental rather than a "big bang" to help isolate

faults and find problems early.

System testing examines the general behaviour of a product. System environments should be as close to the

production or final target environments as possible to minimize the chance that environment-specific defects

will go undetected during testing. System testing may also be predicated on risks in addition to requirements

specifications, business processes, use cases, and other high-level text descriptions or models of system

behaviour, interactions with the operating system, and system resources. It is expected that the AgriDataValue

Pilot leaders will oversee this testing phase, which ought to be organized ahead of the pilot demonstrations.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 108 of 124

Acceptance testing aims to increase user confidence in the system, its parts, or some of its non-functional

aspects. A system's users or customers are normally responsible for it; other stakeholders may also be

engaged. Finding errors is not the main goal of acceptance testing. Although it's not always the last phase of

testing, acceptance testing can assess how ready the system is for use and deployment. This level of testing is

optional because it is not anticipated that the AgriDataValue platform will be commercialized within the

project timeline.

Figure 57: AgriDataValue's Component Test Levels

Figure 57 illustrates, in a summative manner, the Test Levels that each component must be validated and

verified against in the context of the AgriDataValue project.

8.2 Validation plan

The process that AgriDataValue pilot partners must adhere to in order to validate the various AgriDataValue

components that are being used in their pilots is outlined in the Validation Plan.

Validation using storyboards. The release-based validation will be carried out by the pilot owners. The

AgriDataValue platform will be validated during the pilot demonstration phases using a special release

validation form that contains all functionalities requested by users for each pilot. The validation process will

produce a list of features that are not implemented, partially implemented, or fully implemented. A list of the

missing features and an analysis of the problem(s) will be provided to assist the relevant AgriDataValue

partners in resolving the potential issue(s).

Documentation needs to be completed for each verified feature or component. The documentation for every

feature and component will be gathered and examined by the pilot owners, who will follow a template for

documentation. The missing documentation will be communicated to the relevant AgriDataValue partners.

The documentation provided to the pilot leaders will serve as the foundation for the validation process.

Annex I outlines the necessary documentation that every owner of a component must possess. After every

pilot-based validation, the verified documentation will be included in the platform release package.

Figure 58: Verification and Validation process

Figure 58 above illustrates the Verification and Validation process that needs to be followed by each

AgriDataValue partner. After conducting component and integration testing, each partner generates an

integration report that compiles the testing results. Based on the component integration reports, pilot leaders

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 109 of 124

will produce a storyboard validation report attesting to the implementation of each pilot's requested

functionalities.

Verify the KPIs, or key performance indicators. Each release will have a set of quantifiable and validated key

performance indicators (KPIs), such as not reached, partially reached, and fully reached. To assist in achieving

the goal, technical partners will receive a KPI validation report. The KPIs are included in the template that is

described in Annex I.

8.3 Technical requirements – the update process

The technical requirements and technical specifications (initial version presented in D1.3) of AgriDataValue

project are closely linked to the progress of the rest of the components detailed in the present document. This

is also part of the verification report for each component as their functionality aims to cover the technical (and

consequently the user) requirements. Due to the changing nature of the knowledge and the complexity of

each component and for keeping an up-to-date status, an action plan has been established.

Table 1 - Mapping between Technical requirements and User requirements, as defined in D1.3 needs

periodical verification, which is performed in the context of Task 1.4. Components which are targeted for the

update are all components of the ADV platform, and together with the component owners’ collaboration,

updates are further to be identified or detailed.

Regarding the potential updates of the technical requirements, actions launched and aimed to be performed

are:

- Iterate through the list of technical requirements and technical specifications from D1.3 with each

partner for potential updates;

- Check if there are any user requirements which are not covered by any technical requirements and

investigate whether they can be covered;

- Check if some of these requirements are no longer relevant, to conclude what is to be detailed further

(brief description);

- Run an initial validation and verification through the pilots (verify what is covered, what is missing);

The expected result is an up-to-date set of technical requirements with the possibility of real-time changes

based on current knowledge and AgriDataValue project’sdevelopment.

As an example, the procedure of updating technical requirements as defined for the “Satellite Earth

Observation Data Capturing Toolbox” (EOD) component is presented. The initial technical requirements and

user requirement mapping in D1.3 for this component was the following:

ID Type Title
Related

component
Priority

Related User

Requirement

Verification Method

(Description/Demonstration of

functionality, Achieved/Not

Achieved, N/A)

Satellite Earth Observation Capturing requirements

REQ.FN.08.01 Functional
EO imagery

catalogue
EOD S

REQ.US.01

REQ.FN.08.02 Functional
EO imagery

access
EOD S

REQ.US.01

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 110 of 124

ID Type Title
Related

component
Priority

Related User

Requirement

Verification Method

(Description/Demonstration of

functionality, Achieved/Not

Achieved, N/A)

REQ.FN.08.03 Functional

Ingestion of and

access to other

datasets

EOD S

REQ.US.01

REQ.FN.08.04 Functional
EO data

processing
EOD S

REQ.US.01

REQ.FN.08.05 Functional

EO Large Scale

(raster)

processing

EOD S

REQ.US.01

REQ.FN.08.06 Functional

EO Large Scale

(object-based)

processing

EOD S

REQ.US.01

Through the live technical requirements update procedure, five (5) more Technical Requirements were added

for this component:

ID Type Title
Related

component
Priority

Related User

Requirement

Verification Method

(Description/Demonstration of

functionality, Achieved/Not

Achieved, N/A)

Satellite Earth Observation Capturing requirements

REQ.FN.08.07 Functional
Catalogue STAC

compliance
EOD S

REQ.US.01

REQ.FN.08.08 Functional
OGC

compliance
EOD S

REQ.US.01

REQ.FN.08.09 Functional COG support EOD S REQ.US.01

REQ.FN.08.10 Functional
Sentinel data

availability
EOD S

REQ.US.01

REQ.FN.08.11 Functional

Machine

learning and AI

integration

EOD S

REQ.US.01

8.4 Verification report collection status

The template provided in Annex I was completed by component owners whose components were included in

the AgriDataValue integrated platform first version, as previously mentioned in the first two sections. Each

component's functionality and integration tests were included in the reports. The EU has access to the

comprehensive details of these documents, which are kept on AgriDataValue's online documentation platform

(Owncloud, hosted by Synelixis). As of the submission of this deliverable, we have gathered seven (7) reports

that cover WP2 components; the rest of the reports are in progress following the development timeline of

their respective components. This is a summary of the status of the report collection; updated reports will be

supplied as components are updated, and the collection is still ongoing.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 111 of 124

9 Conclusions and Next Steps
The components, tools, and technologies of the first, baseline, version of the ADV integrated platform —which

facilitates solution integration, platform interoperability, and pilot case support—are described in this

document. These components, tools and technologies are made available in a manner that:

• provides an overview of the components forming the ADV integrated platform;

• offers a tangible implementation that the pilot applications can use to direct future development; and

• gives complete flexibility for application configuration and deployment to support the diverse needs

of the stakeholders and the wide range of pilot needs.

The document utilizes and presents work mainly conducted within the context of WP2, as well as from

technical work originating in the context of WP3 and WP4. It supports project Milestone 4 "Agri-environment

Platform & Tools (ADS Baseline)" and offers the baseline release of the ADV integrated platform.

The ADV pilots will utilise and evaluate this release in the upcoming months, in order to develop and assess

the ADV applications that will be leveraged during their execution. A revised version of this deliverable will be

presented in D2.2 (M24) and D2.3 (M36), incorporating the feedback of the end users.

The development of the first, baseline, version of the integrated platform, the initial integration of the ADV

components, and the verification and validation plan for the ADV components are the main accomplishments

of D2.1.

As a next step, the ADV components and the integrated ADV platform, Version 1, will be presented in D2.2,

which is scheduled for release in the beginning of 2025.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 112 of 124

References

[1] “ - ” [] :

https://www.synfield.gr/. [Accessed 12 2023].

[2] “ - ” [] :

https://www.synfield.gr/about-synair/. [Accessed 12 2023].

[3] N & “ : ” Annu. Rev.

Phytopathol, 2005, pp. 43, 83-116.

[4] Q Y & Y “ : ” ACM

Transactions on Intelligent Systems and Technology (TIST), vol. 10(2), pp. 1-19, 2019.

[5] Z J H & “ -edge-cloud hierarchical federated

 ” ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1-6.

[6] N & Ú “

 ” arXiv preprint arXiv:1802.08908, 2018.

[7] H & Z “

 ” Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security, pp. 308-318, 2016.

[8] “ ” International colloquium on automata, languages, and

programming (pp. 1-12)., vol. Springer Berlin Heidelberg., 2006.

[9] H & “ -efficient

 ” Artificial intelligence and statistics, pp.

1273-1282, 2017.

[10] í “ : - ”

2015.

[11] W “ 2 0 ” [] : : 2

[12] “W ” 2020 [] : :

[13] “ V 2 0 05 ” 2012 [] : : -

open.org/security/saml/v2.0/sstc-saml-approved-errata-2.0.html.

[14] Z Y J Z J W & Y “

 ” Concurrency

and Computation: Practice and Experience, vol. 34(7), 2022.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and

Y “ N ” Advances in neural information processing systems,

2014.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 113 of 124

Annex I

Kafka message schema

Generic-message schema
{
 "$schema": "http://json-schema.org/draft-07/schema",
 "$id": "http://eu-agridatavalue.com/v1/generic-message.schema.json",
 "title": "ADV Generic Message",
 "description": "Common message structure",
 "type": "object",
 "properties": {
 "header": { "$ref": "generic-header.schema.json" },
 "body": { "$ref": "specific-body.schema.json" }
 },
 "required": [
 "header"
],
 "additionalProperties": false
}

Generic-header schema
{
 "$schema": "http://json-schema.org/draft-07/schema",
 "$id": "http://eu-agridatavalue.com/v1/generic-header.schema.json",
 "title": "ADV Generic Message-Header",
 "description": "Common header used by all messages",
 "type": "object",
 "version": "0.1",
 "properties": {
 "topicName": {
 "description": "Message hub topic-name",
 "type": "string"
 },
 "sender": {
 "description": "Message sender identifier, e.g., INTRA",
 "type": "string"
 },
 "sentUtc": {
 "description": "Message origination time/date in UTC time (GMT)",
 "type": "string",
 "format": "date-time"
 },
 "source": {
 "description": "Specific sender (component, subcomponent, etc.) identifier (e.g. STORE)",
 "type": "string"
 },
 "messageId": {
 "description": "A uid that uniquely identifies this message. It should be created by the
sender so that the receiver can use this in case a response is needed",
 "type": "string"
 },
 "processId": {
 "description": "A uid that correlates this message to a higher level process. It should be
created by the component where the process was initiated. This uid will add a higher-level perspective to the message",
 "type": "string"
 }
 },
 "required": [

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 114 of 124

 "topicName",
 "sender",
 "sentUtc",
 "source"
],
 "additionalProperties": true
}

Generic-body schema
{
 "$schema": "http://json-schema.org/draft-07/schema",
 "$id": "http://eu-agridatavalue.com/v1/specific-body.schema.json",
 "title": "ADV Specific Message-Body",
 "description": "Specific body per topic in message-hub",
 "type": "object",
 "properties": {
 "prop1": {
 "description": "Sample property 1",
 "type": "string"
 },
 "prop2": {
 "description": "Sample property 2",
 "type": "number"
 }
 },
 "required": [
 "prop1"
],
 "additionalProperties": true
}

Component verification report template

Component Validation Report
Table 14, below tabulates the general information of an AgriDataValue component that is deployed and

validated. Some information is already available in the component information spreadsheet, so you can copy

it from there.

Component general description
Table 14: Component's general description

Title This field holds the name of

the AgriDataValue

component

WP This field holds the WP that

the component belongs to

Component
Identifier

This field holds a short identifier for the component (e.g., DKM)

Description This field holds the component's operation description

Repository type This field holds the

repository type of the

source code of the

component. (e.g., Private,

AgriDataValue GitLab)

Justification This field holds the

justification of the source

code repository type

selection

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 115 of 124

Repository URL If the Repository type is in AgriDataValue 's GitLab, then the absolute URL of

the component's location must be filled in here.

Features’ list The list of the functionalities provided by the component in a bullet list

Integration

component list

This field holds the list of components that this component interoperates and

will integrate with (use the component information spreadsheet for this)

Deployment

location

This field holds deployment location (e.g., AgriDataValue cloud

infrastructure, pilot premises, proprietary location, etc)

Docker image

location and size

If the component is containerized, then please fill in the location of the image

registry that resides and the size of the docker image

Requirements This field holds computational requirements for this component. Among

others, you can describe here the CPU, RAM, STORAGE requirements of the

component.

Contact email This field holds the email of the developer (or contact person) of the

component.

Integration and Functionality Tests
Integration tests verify that your code works with external dependencies correctly. Functionality tests verify

that your component sufficiently covers the features needed, as expressed in previously defined

requirements. Tests shall be described and include/adhere the following categories:

1. Integration Tests: Validating the interconnection between the components to be integrated. Provide

in a tabulated format the summary of the integration activities performed. Indicate whether an

integration activity is successful or not successful. You should also indicate the Pilot/infrastructure that

where these tests were executed.

Test ID <COMPONENT_IDENTIFIER_ITCXX> (e.g., < DKM _ITC01>)

Test description

Component(s) under
test

(Related to the Integration component list)

Component(s) under
test environment

(where each component is deployed for the integration test, e.g., lab,
AgriDataValue testing env, pilot production env, etc)

Dependencies (Any dependencies on other components, environments, etc)

Steps 1. Step 1
2. Step 2
3. …

Pass criteria (What qualifies this test as passed)

Result (Pass / No Pass)

Comments (any details/comments, e.g., in the case that the test did not pass)

2. Functionality Tests: Validating the functionality provided by the component. Test all the test cases for

the component. Provide in a tabulated format the summary of the functionalities provided by the

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 116 of 124

component. Indicate, whether a specific functionality (feature) is fully implemented, partially

implemented, or not implemented.

Test ID <COMPONENT_IDENTIFIER_FTCXX> (e.g., <DKM_FTC01>)

Test description

Related technical
requirement(s)

(Have a look at Appendix I)

Feature(s) under test (Related to the Component feature list)

Test environment (e.g., lab, AgriDataValue testing env, pilot production env, etc)

Dependencies (Any dependencies on other components, environments, etc)

Steps 1. Step 1
2. Step 2
3. …

Pass criteria (What qualifies this test as passed)

Result (Pass / No Pass)

Comments (any details/comments, e.g., in the case that the test did not pass)

Validation summary
In this section, each partner shall include a summary of the performed functionality and integration tests for

this component (how many tests per type have been performed, how many were passed, were there any

failed tests, what was the coverage of the functionality, which Technical Requirements where covered, etc).

Please also include any useful comments about the testing and the integration process. Integration is

considered successful when:

• The previous descriptions have been submitted.

• Sufficient functionality and integration tests have been carried out providing adequate coverage of

the functionality provided by each component and interconnection with other AgriDataValue platform

components.

Component KPIs
In this section, each partner will need to include component KPIs (e.g., System performance), if applicable.

This section does not concern business KPIs or KPIs included in the GA, but technical-oriented ones that are

specific for their component.

KPI Name Description Metric
Method of

measurement
Target Result

System performance

<KPI_COMPON

ENT_IDENTIFIE

R_XX> (e.g.,

KPI_DKM_01)

(the name of

the KPI, e.g.,

Model update

time)

(description of the KPI,

e.g., time to update a

model after fetching

new data)

(e.g., Time in

seconds)

(method to measure if

the KPI was reached,

e.g., measure the

total time required to

update a model)

(KPI target,

e.g., <1min)

TO BE

FILLED AND

UPDATED

FOR

DELIVERAB

LES D2.2/3

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 117 of 124

EOD API description

Title

The Processing API (or shortly "Process API") is the most commonly used
API in Sentinel Hub as it provides images based on satellite data. Users
can request raw satellite data, simple band combinations such as false
colour composites, calculations of simple remote sensing indices like
NDVI, or more advanced processing such as calculation of Leaf area index
(LAI).

URL: api/v1/process

Full documentation also available here: https://docs.sentinel-hub.com/api/latest/api/process/
Method This field holds the type of the Method used
POST
URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.
/

Data Params This field holds the body payload of a post request.
Required:

input

• bounds: Defines the request bounds by specifying the bounding box
and/or geometry for the request. If both are specified it will generate
an image for the bounding box and render data contained within the
geometry.

• data: The collections you wish to request, along with certain
processing and filtering parameters.

output

width: The request image width. Must be an integer between 1 and

2500.

• Height: The request image height. Must be an integer between 1 and
2500.

• Resx: Spatial resolution of the request image in a horizontal direction.

• Resy: Spatial resolution of the request image in a vertical direction.

• Responses: Response object(s).

Evalscript The user provided evalscript59.

Optional:
image_id=[alphanumeric] parameter description
Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>
200
Content: image/jpeg or
image/png or image/tiff

Returns the imagery as requested by the user.

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.
400

Content: application/json
Bad request

500
Content: application/json

Server error

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

 import requests

59 https://docs.sentinel-hub.com/api/latest/evalscript/v3/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 118 of 124

response = requests.post('https://services.sentinel-

hub.com/api/v1/process',

 headers={"Authorization" : "Bearer <your_access_token>"},

 json={

 "input": {

 "bounds": {

 "bbox": [

 13.822174072265625,

 45.85080395917834,

 14.55963134765625,

 46.29191774991382

]

 },

 "data": [{

 "type": "sentinel-2-l2a"

 }]

 },

 "evalscript": """

 //VERSION=3

 function setup() {

 return {

 input: ["B02", "B03", "B04"],

 output: {

 bands: 3

 }

 };

 }

 function evaluatePixel(

 sample,

 scenes,

 inputMetadata,

 customData,

 outputMetadata

) {

 return [2.5 * sample.B04, 2.5 * sample.B03, 2.5 * sample.B02];

 }

 """

})
Notes This field holds any additional helpful info related to this endpoint.

Title
Batch Processing API (or shortly "Batch API") enables you to request data
for large areas and/or longer time periods for any Sentinel Hub supported
collection, including BYOC (bring your own data).

URL: api/v1/batch/process

Full documentation also available here: https://docs.sentinel-hub.com/api/latest/api/batch/
Method This field holds the type of the Method used
POST
URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.
/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 119 of 124

Data Params This field holds the body payload of a post request.
Required:

processRequest.input

• bounds: Defines the request bounds by specifying the bounding box
and/or geometry for the request. If both are specified it will generate
an image for the bounding box and render data contained within the
geometry.

• data: The collections you wish to request, along with certain
processing and filtering parameters.

processRequest.output

width: The request image width. Must be an integer between 1 and

2500.

• Height: The request image height. Must be an integer between 1 and
2500.

• Resx: Spatial resolution of the request image in a horizontal direction.

• Resy: Spatial resolution of the request image in a vertical direction.

• Responses: Response object(s).

processRequest.evalscript The user provided evalscript60.

Optional:

output

• defaultTilePath: Path or path template specifying where batch
processing results shall be stored

• overwrite: If true, the request will never fail if files already exist.
Instead, any existing files will be overwritten, except if skipExisting is
true and all outputs for a tile exist.

• skipExisting: If true, any tiles for which all outputs already exist will be
skipped.

• cogOutput: If true, the results will be written as COG (cloud optimized
GeoTIFFs).

• collectionId: If provided, the results will be written as COG (cloud
optimized GeoTIFFs) and added to the existing collection with the
specified identifier.

bucketName
Simplified alternative for specifying where the results shall be written,
where only the bucket name is specified.

zarrOutput

Specifies Zarr creation parameters. If this parameter is specified, all
outputs in processRequest must be of the type zarr/array and

neither bucketName nor output can be specified.

Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>
200
Content: application/json

Returns the metadata information of the request.

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.
400

Content: application/json
Unauthorized

401

Content: application/json
Unauthorized

403

Content: application/json
Insufficient permissions

60 https://docs.sentinel-hub.com/api/latest/evalscript/v3/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 120 of 124

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.
See documentation for example : https://docs.sentinel-hub.com/api/latest/reference/#tag/batch_process

Notes This field holds any additional helpful info related to this endpoint.

Title

The Statistical API (or shortly "Stats API") enables you to get statistics
calculated based on satellite imagery without having to download
images. In your Statistical API request, you can specify your area of
interest, time period, evalscript and which statistical measures should be
calculated. The requested statistics are returned in the API response

URL: api/v1/statistics
Full documentation also available here: https://docs.sentinel-hub.com/api/latest/api/statistical/
Method This field holds the type of the Method used
POST
URL Params This field holds the parameters (if any). Separated based on the fields below into required and
optional.
/

Data Params This field holds the body payload of a post request.
Required:

input

• bounds: Defines the request bounds by specifying the bounding box
and/or geometry for the request. If both are specified it will
generate an image for the bounding box and render data contained
within the geometry.

• data: The collections you wish to request, along with certain
processing and filtering parameters.

aggregation

• timeRange: Time range for which we want statistics to be computed

• aggregationInterval: Specifies how given time range is split into
time intervals

• width: Width of the sample matrix.

• Height: Height of the sample matrix.

• Resx: Spatial resolution used to calculate the height of the
sample matrix from the input.bounds.

• Resy: Spatial resolution used to calculate the height of the
sample matrix from the input.bounds

Evalscript The user provided evalscript61.

Optional:

calculations
Define which statistics and histogram to calculate. It can be specified
differently for each evalscript output. If omitted only the basic
statistic (min, max, mean, stDev) will be calculated.

Success response <What should the status code be on success and is there any returned data? This is useful
when people need to know what their callbacks should expect>
200
Content: application/json Statistics for intervals, where data is available

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions
of why the endpoint fails and saves a lot of time during the integration process.
400 Bad request

61 https://docs.sentinel-hub.com/api/latest/evalscript/v3/

https://docs.sentinel-hub.com/api/latest/evalscript/v3/

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 121 of 124

Content: application/json
403
Content: application/json

Insufficient permissions

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,
choose the format wisely so that is clear and easy to read by the interested parties.

Sample call is available on the documentation page: https://docs.sentinel-

hub.com/api/latest/reference/#tag/statistical
Notes This field holds any additional helpful info related to this endpoint.

Fleviden Framework

Introduction
FL is a distributed approach of ML that trains a ML model across multiple decentralized edge devices or clients

holding data without exchanging it. Fleviden, which stands for Federated Learning Eviden, is a fully extensible

distributed learning framework originally developed internally by the Research and Development department

of Atos. It has been included as part of the background technologies described in the project Consortium

Agreement (CA).

Within the AgriDataValue project, we have the specific objective of extending and improving this asset to

handle privacy-preserving HFL. This improvement is related to the main objectives identified for task 2.2 edge-

driven analytics / FDML:

1. To build an efficient and scalable FL framework to train DL models for the use cases in a federated

way.

2. Enhance the privacy of the FDML with privacy-preserving techniques such as PATE.

The following subsection (“Background for Fleviden Framework) is mostly based on the background developed

by ATOS for Fleviden and is provided here for the sake of comprehensiveness of the document while section

“Hierachical Federated Learning Agents in Fleviden) is devoted to the aspects that have been specifically

implemented in the AgriDataValue project.

Background for Fleviden Framework
Fleviden is the Python framework for Federated and Distributed Learning developed by Atos. Following the

principle of divide and conquer, Fleviden proposes a modular architecture for the development of distributed

ML based on pipes and filters, embodied by its basic unit called pod. A pod defines several input and output

interfaces and receives several inputs, performs a specific atomic functionality based on those inputs, and

triggers the appropriate output based on it. The concatenation of different pods allows the generation of

applications flexibly and efficiently.

This modular architecture proposed by Fleviden offers some advantages that are essential for the

AgriDataValue project:

1. Flexibility: compared to other frameworks, facilitates the implementation of more complex

architectures, such as the HFL that is intended to be implemented in task 2.2.

2. Interoperability: Fleviden is fully decentralized and can be deployed on-premises and cross-cloud

infrastructure. It can even be deployed in a hybrid manner and utilize recent paradigms like server-

less computation.

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 122 of 124

3. Privacy-preserving: Fleviden currently supports privacy-preserving approaches such as secure sum

and in-plan homomorphic encryption and differential privacy. This is a key objective for task 2.2.

Additional solutions like Multiparty Computation and PATE can be extended.

In addition to these advantages, we remark the fact that this technology is owned by a consortium partner

enables the framework to be tailored to the project's needs, rather than the other way around. Furthermore,

it ensures the maintenance of the framework even after the project's completion.

Hierarchical Federated Learning Agents in Fleviden
In this section we delve into the implementation of the diverse FL Agents required in the AgriDataValue project

that are located inside FDML and DKM components.

DKM
The DKM performs the functionality associated with the root server of the HFL. In the Figure 59, the

implementation of this component is described in terms of Fleviden pods.

Figure 59. Fleviden architecture for the development of the DKM component

Five pods are involved in the DKM:

1. HTTP Pod: This communication pod exposes an API REST with the following endpoints or input

interfaces:

a. /rest/train: triggering this interface starts the HFL process. It receives as input the metadata

defined by the end user in a JSON format. This metadata includes the domain and pilot

information recovered in Table 1.

b. /rest/upstream: input interface where the local models from the FDML component are

received in a JSON format.

Additionally, this pod triggers two external interfaces:

c. http://xai-builder:8000/build input interface of the XAI sub-component dedicated to training

the XAI explainer associated with the global model. This interface is triggered at the end of

the training process with the metadata defined during the process in a JSON format.

d. http://FDML-client-id:80/rest/downstream input interface of the FDML agents linked to the

DKM. This interface is triggered at the end of each round with the weights of the global model

generated in a JSON format.

2. Fleviden server: This pod orchestrates the cross-silo FL:

a. It is initialized with a list of associated clients. This list of clients can be defined directly in the

Docker compose that deploys the component.

http://xai-builder:8000/build
http://fdml-client-id/rest/downstream

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 123 of 124

b. Each time it receives a local model, it performs the authentication process described in section

6.1. All the weights that pass through the authentication process are sent to the aggregator

pod to conform the global model.

c. It checks the actual round of the FL process. When the final round is reached it triggers the

Metadata pod to finish the learning process.

3. Weighted aggregator: This pod receives the local models’ weights in a JSON format through its

interface /aggregate. When a specific number of models from different clients are received, the

aggregator performs the FedAvg technique.

4. Metadata: This pod generates the metadata described in Table 1 and concatenates it to the message

received through its input interface /concat. In this way, the final message/output is a JSON with the

global model weights and the associated metadata.

5. MinIO Pod: This pod receives as input the weights of the model and the metadata associated with the

global model through its input interface /store. This pod generates the global model in a pickle format

and stores it in the SECURESTORE MinIO bucket models. Additionally, the pod saves the metadata

associated with the model in JSON format.

FDML Intermediate Server
The intermediate server has been developed using the architecture shown in Figure 60.

Figure 60. Fleviden architecture for the development of the FDML intermediate server sub-component

As seen in the previous figure, the pods involved in the architecture of the FDML intermediate servers have

already been described for the development of the DKM. However, the connections defined between the

input and output interfaces make the final functionality slightly different. The functionality of the intermediate

server can be divided into two flows depending on the input interface of the pod HTTP triggered:

1. /rest/upstream: Through this interface, the FDML Intermediate servers receive the local models in a

JSON format. The weights are forwarded until the weighted aggregator generates the regional models.

The aggregated model is forwarded to the root server in the DKM through the pod HTTP by the

interface: http//root-server:80/rest/upstream.

2. /rest/downstream: Through this interface, the Intermediate server receives the weights from the

global model generated by the DKM. Then these weights are broadcasted to the FDML clients by the

interface http://FDML-client:80/rest/downstream.

FDML client with Fleviden
Figure 61 represents the Fleviden architecture implemented for the development of a FDML Client.

Figure 61. Fleviden architecture for the development of an FDML Client

HORIZON Research and Innovation Actions - 101086461: AgriDataValue

Deliverable D2.1: AgriDataSpace Underlying Technology

Page 124 of 124

The pods involved in this architecture are:

1. HTTP pod: This communication pod exposes an API REST with /rest/downstream input interface or

endpoint. This interface is triggered with the global model received from the intermediate servers of

the FDML component in a JSON format. Additionally, the local updates of the model generated by the

Keras pod are forwarded in JSON format to the endpoint http://Intermediate-server:80/rest/upstream

2. Flevi Client: This pod orchestrates the FL on the client side.

3. Keras pod: This pod receives as input a serialized model in a JSON format and trains it using the Keras

framework. To do this, this pod extracts the previously pre-processed private data. It is important to

remark that in this version of the platform, the private data are located in the clients in CSV format.

However, in future implementations we will include the possibility to access the data to an API and

the pre-processing dedicated for each data type will be encapsulated in a Fleviden pod.

